B.Sc. DEGREE EXAMINATION – JUNE, 2006.

First Year

Mathematics

CALCULUS AND CLASSICAL ALGEBRA

Time: 3 hours

Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Differentiate $y = (\sin x)^x$.
- 2. Find the equation of the tangent to the curve $y = \frac{6x}{x^2 1}$ at the point (2,4).
- 3. Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$ for different values of m.
- 4. Using Bernoulli's formula, find $\int (2x^2+1)\cos x dx$.

5. If
$$u_1 + u_2 + \dots + u_n + \dots$$
 is convergent then show that $\lim_{n \to \infty} u_n = 0$.

6. Test the convergence of the series
$$\sum_{n=0}^{\infty} \frac{n^3+1}{2^n+1}$$
.

8. Show that
$$\sqrt{x^2+16} - \sqrt{x^2+9} = \frac{7}{2x}$$
 nearly for sufficiently large values of x .

SECTION B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

9. (a) If
$$y = \sin(m \sin^{-1} x)$$
, prove that $(1-x^2)y_2 - xy_1 + m^2y = 0$.

(b) Find
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
. (7 + 3)

10. (a) What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the print (1,1)?

(b) Find the pedal equation of the curve
$$r = ae^{\theta \cot \alpha}$$
. (6 + 4)

11. Obtain a reduction formula for
$$\int \sin^n x$$
, where *n* is a positive integer. Deduce a formula to evaluate $\int \sin^n x \, dx$. (6 + 4)

12. Express $F(x)=x^2$ as a Fourier series with period 2π , to be valid in the interval $-\pi$ to π . (10)

13. Show that the series $\frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots$ is convergent when k > 1 and divergent when $k \le 1$. (10)

14. (a) State Leibuitz test for checking the convergence of an alternating series.

(b) Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{2n-1}.$$
 (3 + 7)

15. Sum the series

$$\frac{1^{2}}{1!} + \frac{1^{2} + 2^{2}}{2!} + \frac{1^{2} + 2^{2} + 3^{2}}{3!} + \dots + \frac{1^{2} + 2^{2} + \dots + n^{2}}{n!} + \dots$$
(10)

16. Show that if x > 0,

$$\log x = \frac{x-1}{x+1} + \frac{1}{2} \frac{x^2 - 1}{(x+1)^2} + \frac{1}{3} \frac{x^3 - 1}{(x+1)^3} + \dots$$
 (10)

3

UG-744

BMS-02

B.Sc. DEGREE EXAMINATION – JUNE, 2006.

First Year

Mathematics

TRIGONOMETRY, ANALYTICAL GEOMETRY
OF THREE DIMENSIONS AND VECTOR
CALCULUS

Time: 3 hours

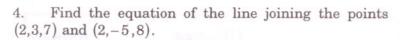
Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Each question carries 5 marks.

- 1. Show that $\cos 6\theta = 1 18 \sin^2 \theta + 48 \sin^4 \theta 32 \sin^6 \theta$.
- 2. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 3. Find the real and imaginary parts of Log $(\alpha + ib)$.



5. Find the centre and radius of the sphere $x^2 + v^2 + z^2 - 2x - 4v + 6z - 11 = 0$

7. Find the divergence of $x^2 \, \overline{i} + y^2 \, \overline{j} + z^2 \, \overline{k}$.

8. If $\overline{F} = 3x^2 y \overline{i} + (x^3 - 3y^2)\overline{j}$, compute $\int \overline{F} \cdot d\overline{r}$ along $y^2 = 4x$ from (0,0) to (4,4).

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

Each question carries 10 marks.

9. Prove that $\cos^5 \theta \cdot \sin^4 \theta = \frac{1}{2^8} [\cos 9\theta + \cos 7\theta - 4\cos 5\theta - 4\cos 3\theta + 6\cos \theta].$

10. If $\cos(x+iy) = \cos\theta + i\sin\theta$, show that $\cos 2x + \cosh 2y = 2$.

11. Sum the series upto n terms:

$$\tan^{-1}\frac{4}{4.1^2+3}+\tan^{-1}\frac{4}{4.2^2+3}+\tan^{-1}\frac{4}{4.3^2+3}+...$$

12. Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-}{2}$;

 $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Find also the point of intersection and the plane through them.

13. Find the shortest distance between the lines $\frac{x+3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Also find the equation of the line of shortest distance.

14. Find the equation of the sphere which passes through the point (1,-2,3) and the circle z=0, $x^2+y^2+z^2-9=0$.

15. Find $\nabla \cdot \overline{F}$ and $\nabla \times \overline{F}$ of the vector point function $\overline{F} = xz^3 \overline{i} - 2x^2 y z \overline{j} + 2yz^4 \overline{k}$ at the point (1, -1, 1).

16. Evaluate $\iint_{S} \overline{F} \cdot \hat{n} \, ds$ where $\overline{F} = 4xz \, \overline{i} - y^2 \, \overline{j} + yz \, \overline{k}$ and S is the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

B.Sc. DEGREE EXAMINATION – JUNE 2006.

First Year

DIFFERENTIAL EQUATIONS

Time: 3 hours

Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Solve: $xp^2 2yp + x = 0$.
- 2. Solve : $(D^2 + 3D + 2) y = x^2$.
- 3. Solve: $(D^2 2D + 4) y = e^x .\cos x$.
- 4. Form a partial differential equation by eliminating the function of ϕ from

$$\phi(x + y + z, x^2 + y^2 - z^2) = 0.$$

- 5. Solve: (mz ny)p + (nx lz)q = ly mx.
- 6. Solve: $z = px + qy + c\sqrt{1 + p^2 + q^2}$.
- 7. Prove that $L[t^n] = \frac{\lceil (n+1) \rceil}{s^{n+1}}$ and hence find $L[t^{\frac{1}{2}}]$.
- 8. Find $L^{-1} \left[\frac{s+2}{(s^2+4s+5)^2} \right]$.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

9. Solve:
$$(2x+1)^2 y'' - 2(2x+1)y' - 12y = 6x$$
.

10. Solve:
$$(4D+2)x + (9D+31)y = e^t$$

 $(3D+1)x + (7D+24)y = 3$.

11. Solve:
$$\frac{d^2y}{dx^2} + 4y = \cos ec$$
 (2x) by the method of variation of parameters.

12. Verify the condition of integrability in the equation (y+z) dx + (z+x) dy + (x+y) dz = 0 and solve it.

13. Solve:
$$p + 3q = 5z + \tan(y - 3x)$$
.

14. Solve:
$$p^3 + q^3 = 27z$$
.

15. (a) Find
$$L[(f(t))]$$
 where

$$f(t) = 0$$
 when $0 < t < 2$
= 3 when $t > 2$.

(b) Find
$$L^{-1} \left[\frac{s^2}{(s-1)^3} \right]$$
.

16. Using Laplace transform, solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t \text{ given that } y = \frac{dy}{dt} = 0 \text{ when } t = 0.$

3