Mathematics - IX STANDARD

Unit No. & Topic	Expected learning outcomes	Content	Transactional Teaching Strategy	Teaching Aids	No. of Periods
•	To classify numbers as belonging to N, W, Z or Q	1.1 Number Systems The notations N, W, Z and Q	Use algebraic equaition like 5x-10=0, 5x=0, 5x+10=0, 5x±3=0 to illustrate different categories of numbers	Chart or a tree diagram	
Theory	To understand the effects of binary operations of addition, subtraction, multiplication, division, taking GCD, LCM etc in the different number systems	Fundamental operations in N,W, Z and Q- some properties	Discriminate a unary operation from a binary operation through examples	Operation tables: For example that of {01,1} under addition multiplicat ion	
1. Number Theory	With the help of 'operation tables, recognize similarities (or otherwise) in the structure	Structure of N, W Z and Q	Pointing out the 'isomorphic' structure wherever possible, without actually defining it.	Operation tables of different varieties	30
	Making coordinates on a line, using N,W, Z and Q	1.2 The real Number line Notion of 1-1 correspondence	Mark points on a line and illustrate ' order'	Number line diagrams	
	To recognize 'gaps' on the line even after using N,W,Z and Q To appreciate the existence of irrational numbers and know to mark some of them on a line	Need for irrational Numbers	Use 2 (diagonal length of unit square) as example, cite solutions of equations like $x^2\pm;3=0$ to show the 'insufficiency' of using N,W,Z and Q		

Unit	Expected learning	Content	Transactional	Teaching	No. of
No.	outcomes		Teaching Strategy	Aids	Periods
&					
Topic					

	To define rational and irrational numbers using decimals, To compute an approximate value of a fraction whose	Manipulation of irrational numbers	As a starting point explain how 1=.999999 and 1/3=.33333 etc make sense. Indicate the usefulness	Charts, Calculator s operations
	denominator is of the form a+b?c (a,b,c ER)		of using the conjugate of the denominator	
	State (without proof) the denseness property of real numbers and describe its meaning	Denseness in R	Explain several non- examples where the denseness property fails	Diagrams
1. Number Theory	To recognize "clock-like" structure in different situations	1.3 Modular Arithmetic 'Modulo' Principle	Motivate with Spiro graph patterns. Star with questions like; Tell the day of a date	Clock face Railway time-table; Calender; Spiro graph
1. Nur	To partition N and Z into disjoint classes under different modulo structures To define congruence (mod m) relation in general terms. To perform addition and multiplication in modulo m To solve very simple and elementary equations in congruence (mod m)	Conguruence modulo m (m E W) relation	From operation tables using representative of classes. For eg. Use addition (mod 5), Multiplication (mod4) etc. illustrate that an equation like $4x = 2$ (mod 3) may have an infinite solution set.	graph

	Unit	nit Expected learning Content		Transactional	Teaching	No. of	
No.			outcomes		Teaching Strategy	Aids	Periods
	&						
ŗ	Горі	c					
	e		To recall formulae for	2.1 Area &	Deal with basic	Charts and	
	ure	15	area and perimeter of	Perimeter Formula	questions on	figures	
ri	ası	en	standard plane figures	for area and	computation of area /		15
	Me	П	(Quadrialerals,	perimeter.	perimeter		
			triangles, circles)				

	To identify the figures kept in juxta – position. To apply formulae to compute the area / perimeter of such figures	2.2 Combined figures Study of area / perimeter of not more than three figures placed in juxta posion.	Use figures / photos wherein is found plane figures placed adjacently. (For example a shed whose cross section is a triangle over a rectangle or a sector removed from a triangled etc)	Geometric designs consisting of combined plane shapes	
3. Some useful Notations	To write a number in the form k.10 n? with 1≤ k <10, nZ, k??Q To appreciate the concise way of expressing very large or very small data. To convert a number in scientific notation to usual for, of expression and vice-versa	3.1 Scientific Notation The concept of scientific notation	Use very large and very small data of numerical expression in Astronomy, Geography, Business, Science, Engineering etc to introduce the concept	Data from different life situations; Scientific data from journals.	30

Unit	Expected learning	Content	Transactional	Teaching	No. of
No.	outcomes		Teaching Strategy	Aids	Periods
&					
Topic					
	Understanding	3.2 Notation of	Start with expressions	Chart	
ű	logarithmic notation	logarithums	of the form $x=a^n$ where		
10.5	Converting an	Exponential and	n is an integer and then		
Notatiosn	expression given in	logarithmic	discuss when n can be		
[5	exponential form to	notations	an approximate value		
	logarithmic form and				
l g	vice-versa.				
useful	To power basic rules of	Rules of logarithms	Use Powers of 2 to	Table of	
e I	logarithms	(Produce, Quotient,	explain the laws and	Powers of	
Some	To use basic	Power and Change	then prove formally	2.	
\mathbf{S}	logarithmic rules to	of Base)	using index laws.		
33	simplify expressions				

Defining logarithms to the base 10 To know how to use log tables Applying, common logarithms to find approximate values of given expression. To describe a set in (i) words; (ii) list (iii) set builder forms To identify different types of sets.	Common logarithms 3.3 Set Notation Describing a set	Define and explain characteristic and mantissa illustrate with simple problems; involving products quotients powers square and cube roots. Using 2 ¹⁰ , = 10 ³ , 3 ⁴ = 80., derive approximate values of logarithms of 1 to 10 Number sets from N.W,Z and Q to be introduced first and then sets of general nature to be given	Chart giving different number sets
To define subset, Universal set and Power set To understand and	Set operations	Use of finite sets to	Examples from life
perform Union, Intersection, difference and complementation.		illustrate the concept	situation
To use Venn diagram to illustrate sets.	Venn diagrams	Diagrams to be restricted to two sets only	Life situations

Unit	Expected learning	Content	Transactional	Teaching	No.
No.	outcomes		Teaching Strategy	Aids	of
&					Perio
Topic					ds
	To expand / simplify	4.1 Algebraic	Use of Paper - folding	Paper	
	algebraic expressions	Identities	Diagrammatic	folds	
_	using identities	(x+a)(x=b)	explanation	Diagrams	
ıra	_	$(a+b)^2$, $(a-b)^2$, a^2 -	_		30
Algebra		b^2 , $(a+b+c)^2$			
B		(x+a)(x+b)(x+c)			
4. 4. . .		$(a+b)^3$, $(a-b)^3$			
4	To factorize	Factorization	Treat factorization as	Charts on	
	polynomials using		the reverse process of	identities	
	algebraic identities		multiplication initially		

	To multiply a polynomial by another polynomial To divide a polynomial by another polynomial	Polynomials - Multiplication & Division	Start with quadratic polynomials		
5. Problems solving Techniques	To understand the difference between verification & proof. To know how & where to use the symbols To adopt simple methods of proofs to derive elementary results.	5.1 Conjectures & proofs Axioms, &, & methods of proofs numerical & geometric proofs, proof by contradiction, proof by construction, counter example	Conjecturing, through pattern discover Verification through paper folding & specific subsituations; choose examples from Number theory, Algebra & Geometry Application of proof to Solution of non mathematical life problems	Pattern Charts paper folds	10

Unit No. & Topic	Expected learning outcomes	Co	ontent	_	ansactional ning Strategy	Teaching Aids	No. of Periods
Торис	Recognizing algebraic formulae as models for different situations Recognizing Straight lines as a model for Direct variation Recognizing Rectangle as a model for inverse variation		nematical Algebraic etric	situation formulae is line to variation rectangle for Inver List out t	es as a model se variation. formulae in and maths to ypes of s Eg.	Graphs & Charts	
6. Theoretical Geometry	To verify and understand to theorems given in Apprending To apply the theorems in suproblems	lix A.	6.1 Theorem verification Relation between points, lines of planes parall and transversion on gruents Parallelogram points of concurrence in the	ween & el lines sal;	Paper folding, Symmetry & Transformatio n techniques to be adopted No formal proof to be given. Only verification to be tested through numerical problems	Paper folds symmetry drawings Transform ations	30

To verify and understand the	6.2 Theorems for	Step-by-step	Diagrams	
theorems given in Appendix B.	proofs Theorems on	logical proof		
To apply the theorems in simple	linear pair,.	with diagrams		
problems	vertically oppostite	to be		
	angles, angle-sum	explained &		
	property of a	discussed		
	triangle properties			
	of aparallelograms			

Unit No. & Topic	Expected learning outcomes	Content	Transactiona l Teaching Strategy	Teaching Aids	No. of Periods
•	To identify co-ordinates of given points To plot points with given co-ordinates	7.1 Use of co- ordinates Introducing Co- ordinates idea of quardrants	Use graph sheet as a starting point	Graph Sheet	30
Geometry	To define slope as 'rise' divided by 'run To calculate slope of a line through two given points To understand the equation y = mx+c	7.2 Slope of a line concept of slope Form y=mx + c of a line	Interpreting slopes of descending & ascending lines Identifying the meaning of 'm' & 'c' in practical situations	Real-life situations	
7. Algebra Geometry	To derive the distance formula To apply the distance formula in geometrical situations	7.3 Distance concept Derivation of distance formula	Classify triangles into difference types by calculating their sides Extend it to quadrilaterals	Suitable diagrams	
	To distinguish between internal & external division To derive ration formula To compute the mid-point of a line segment To compute the centroid of a triangle	7.4 Ratio concept Ratio formula	Simple problems involving ratios to be introduced first	Charts	

To compute the area of a triangle	7.5 Area concept	Approach	Simple	
given its vertices	Area formula for a	through	diagrams	
To use the formula to derive	triangle	diagrams		
conditions of collinearity of				
points				

Unit No. & Topic	Expected learning outcomes	Content	Transactiona l Teaching Strategy	Teaching Aids	No. of Periods
8. Trigometry	8.1 Trigonometric rations The degree measure of an angle Definition of sine, consine, tangent ratio & their reciprocals and their values for specific angles	Encourage students to identify details sufficient to compute a given trigonometric ratio	Chart	Chart	15
	To derive the following identities. i) $\sin^2 A + \cos^2 A = 1$ ii) $1 + \tan^2 A = \sec^2 A$ iii) $1 + \cot^2 A = \csc^2 A$ $\sin(90-A) = \cos A \cot(90-A) = \tan A$ $\cos(90-A) = \sin A \sec(90-A) = \csc A$ $\tan(90-A) = \cot A \csc(90-A) = \sec A$ To apply the above identifies to prove simple relations	8.2 Trigonometric identifies Relationship between trigonometric ratios Trigonometric ratios of complementary angle	Encourage both using a righ triangle as a starting point & the basic identities to derive results	Chart	
etry	To locate through drawing appropriate line the centroid Otheocentre, circumcentre and incentre of a given triangle	9.1 Concurrency in a Centrroid, Orthocentre Circumcentre and incentre of a triangle	Introduce with paper folding techniquest	Paper folds	
9. Practical Geometry	Give two lengths, construct 1) the Arithmetic & Geometric Means 2) the Mean proportional	9.2 Geometric interpretation of averages	Introduce idea of means first before construction. Illustrate the concept of mean proportional with an application to find square root.	Paper folds	10

Unit No. & Topic	Expected learning outcomes	Content	Transactiona l Teaching Strategy	Teaching Aids	No. of Periods
10. Handling Data	To form a frequency distribution of an ungrouped data To compute Mean, Median and mode of a grouped data in simple cases and interpret the nature of a data	10.1Measures of central tendency Grouped and ungrouped data; Mean, Median and mode for a given data	Recall the concept of Mean, Median and mode in the case of ungrouped data initially. Give illustrations from life situations	Statistical details from life situations	
	To recognize the nature of spread of a given data. To draw a scatter diagram for a given data. To draw a line of best fit by eye	10.2scatter diagram Graphic view of a given data, scatter diagram idea of line of best fit	Discuss about the nature of a given data based on its scatter diagram; take examples from class situations (like marks and study hours etc)	Real life situations	12
11. Graph	To drawn the graph of a line given (i)'m' and 'c' (ii) two points and (iii) the equation y = mx+c	11.1 Linear graphs Graph of a straight line	Discuss the minimum data needed to plot a line Interpret a given linear graph in different ways.	Graph board	12
	To solve graphically simulatenous equations in two variables identify graphical situations for (i) one solution (ii) many solutions and (iii) no solution	11.2 Application of linear graphs Graphical Solution of simulatenous equiations.	Discuss the correspondenc e between the given simulatanceou s equations and their graphical representation s	Graph board	
				Total	224