XI Standard CHEMISTRY

A- THEORY

UNIT NO	TITLE	Suggested No. of Periods
	Inorganic Chemistry	
I	Chemical Calculations	12
II	Environmental Chemistry	5
III	General Introduction to Metallurgy	5
IV	Atomic Structure – I	5
V	Periodic Classification - I	4
N	Group I s-Block elements	5
VI	Group II s-Block elements	3
VIII	p-Block elements	10
	Physical Chemistry	
IX	Solid state I	6
Х	Gaseous state	7
X	Chemical Bonding	7
XII	Colligative Properties	6
XIII	Thermodynamics-I	9
XIV	Chemical Equilibrium – I	6
XV	Chemical Kinetics – I	4
	Organic chemistry	
XVI	Basic concepts of organic chemistry	6
XVII	Purification of organic compounds	6
XVIII	Detection and estimation of elements	8
XIX	Hydrocarbons	10
XX	Aromatic Hydrocarbons	8
XXI	Organic Halogen compounds	8
Total No. of Periods		140

B- PRACTICAL

(As Found in the last)

UNIT I - CHEMICAL CALCULATIONS

Expected specific outcome of Learning	Contents in terms of concepts	Curriculum transactional strategies	Illustrations	Evaluation	Sugg ested no. of perio ds
Knows about significant fig+ures, S I Units	1.1 Significant figures	Explains significant figures and giving guidelines to find significant figures	Illustrate with examples and explain its importance	Give S.I units for the following quantities: a) Mass b) Temperatur e c) Amount of Substance d) Electric circuit	
Importance of S.I Units	1.2 S.I Units	Giving S.I units for fundamental and derived quantities			
Recognises dimensions	1.3 Dimensions	Solving problems using dimensional analysis	Table of all fundamental and derived quantities		
Proposes concept of scientific notation	1.4 Writing number in scientific notation	Explains the methods of expressing the same values in different exponents		Express the following value in all possible exponents. 7864.281	
Relates scientific notation and decimal notation	1.4.1 Conversion of scientific notation to decimal notation	Scientific notation to decimal notation concept importance	Explanation through number of human red blood cells 25,000,000,000,000 2.5 x 10 ¹³	A typical bacteria cell has a length of about 5×10^{-6} ⁶ m. Write this number in standard decimal notation.	
Learn about Factor Label method	1.4.2 Factor label method	Impress a valid relationship on quality between units	Give the general formula given quantity x conversion factors = desired quantity	Convert 3.00 inches into centimeters.	
Learn the laboratory measurements to calculate intensive properties	1.5 Calculations using densities and specific gravities	General formula for density and specific gravity	Calculation of density and specific gravity using the equation	The measured volume of the nail is equal to .880 cm ³ Its mass is 6.92 g calculate the density	
Applies knowledge to find out formula weight of compounds	1.6 Calculation of formula weight	Method of finding formula weight of different compounds explanation with example	Taking some important compounds and explanation of calculating formula weight	What is the formula weight of hydrated copper sulphate?	
Recognises the value of Avogadro's number and its significance	1.7 Understanding Avogadro' s number	Value of Avogadro' s number is stated – significancies explained		State the value of Avogadro' s number	
Learn the concept of mole concept	1.8 Mole concept- mole fraction of the	Define mole. Explanation with	Explanation of the mole concept with	Methane has the formula CH ₄ .	

	solvent and solute	examples. Define mole	suitable	If a sample
		fraction- quantitative calculations	calculations	contains .30 mole, how many moles of H are present
	1.8.1 Conversion of grams into moles and moles into grams	Principle of calculations	Quantitative calculations	Calculate the number of moles of 100 g. each of the following substances a) NH_3 b) C_2H_5 OH
Knowledge about Emperical formula Understands the method of arriving molecular formula from empirical formula.	1.9 Calculation of empirical formula from quantitative analysis and percentage composition.	Arriving E.F organic empirical from the percentage composition and explain with examples	Method of calculating percentage composition, empirical formula and from analytical data	Calculate the percentage composition of CaO. Calculate empirical formula of a compound in which 2.571 g. of compound contains 1.102g. of carbon and 1.469 g. of oxygen
	1.9.1 Calculation of molecular formula from emperical formula	Arriving M.F from E.F – explaining with example	Relationship between Empirical formula and molecular formula is impressed in the form of an equation	The molecular formulas of some substances are as follows. Write their empirical formula. a) Acetylene C_2H_2 cured in oxyacetylen e flame Glucose, C_6 $H_{12}O_6$ (the chief sugar in blood)
	1.10 Laws of chemical combination and Dalton' s atomic theory 1.10.1 Laws of			
	multiple proportion and law of reciprocal proportion 1.10.2 Postulates of			
Learn the	Dalton' s atomic theory and limitations 1.11	Explain the meaning of	Teach the	Why chemical
Stoichiometric equation Impresses the law	Stoichiomaetric equations 1.11.1 Balancing	Stoichiometric equation with examples Method of balancing	meaning of Stoichiometry Choosing some	equations are to be balanced? Bright and
of conservation of mass and reminds conservation of atoms in chemical	chemical equation in its molecular form	explained of balancing explained with examples and guide lines are given	important reactions and reach them for balancing in	shiny, aluminum objects are covered with a coating of Al_2O_3 .

reaction			molecular form	Balance this
reaction			molecular form	reaction.
	1.11.2 Oxidation reduction-Oxidation number	Define Oxidation and reduction in terms of electron concept. Define and explain oxidation number	Quantitative calculations of oxidation number of atoms in several compounds are taught	Define oxidation and reduction in terms of electron concept
	1.11.3 Balancing Redox equation using oxidation number	Method of balancing redox equations using oxidation number with examples	Choosing important chemical reactions and explanation is given to balance it.	Define Oxidation number and calculate oxidation number of the atoms in the following compounds $Cr_2O_7^{2^{-2}}$ MnO ₂ MnO ₄
			Importance of Stoichiometric calculation is given	Balance the following equation : $MnO_4 + Fe^{+2}$ $\swarrow Mn^{+2} + Fe^{+3}$
Recognises the importance of calculations of chemical reactions	1.12 Calculations based on equations	Principles are explained		
	1.12.1 Mass/Mass relationship	Teaching of several reactions and then after balancing calculations of mass-mass relationship explained	Specific reactions are taken and after balancing teach mass-mass relationship	Calculate the amount of Al_2Cl_6 that is formed from 20.08 g of Al.
Recognises the concentration of reactants in solution	1.13. Methods of expressing concentration of solution	Concentration is explained	Recalls the calculation of number of moles, of solute and then calculation of molality and molarity and normality	Define : a) Molality b) Morality c) Normality How a solution of sulphuric acid of 0.1M and 0.1 N sulphuric acid is prepared
	1.14 Calculations on principle of volumetric Analysis	Laws of volumetric analysis is explained	Quantitative methods of calculating normality and the amount of the substances present in solution are explained	25 ml. of .1N NaOH required 50 ml of HCI. Calculate the amount of HCI present in 500 ml.
Knowledge about equivalent mass of an element and compounds	1.15 Determination of equivalent mass of an element	Definition with explanation		Define equivalent mass
	Determination of equivalent mass by oxide, chloride and hydrogen displacement method	Explains different methods of determining equivalent mass of elements	Calculations on oxide, chloride and hydrogen displacement are explained	
	1.15.2 Calculation of equivalent mass	Explain the methods of calculating equivalent	Calculations of equivalent masses	Calculate the equivalent mass

	of an element and compounds	mass of acids, gases, oxidising and reducing agents	of acids, gases, oxidising and reducing agents are explained.	of HCI, SO4 ²⁻ , NaOH, KMnO4 and K ₂ Cr ₂ O ₇
Recalls the importance of Avogadro's hypothesis	1.15.3 Determination of molar mass of a volatile solute using Avogadro' s hypothesis.	Principles involving calculation of molar mass of a volatile substance in impressed	Experimental method and calculation based on it is clearly explained	Describe in detail how molar mass of a volatile substance is calculated from Avogadro' s hypothesis.

UNIT II ENVIRONMENTAL CHEMISTRY

Expected specific outcome of Learning	Contents in terms of concepts	Curriculum transactional strategies	Illustrations	Evaluation	Sugg ested no. of perio ds
Knowledge about environm ent	2.1 Environment	Defines environment and its significance	Diagram showing different layers of atmosphere		
Understands pollution and pollutants	2.2 Pollution and pollutants	Explains pollution and pollutants with common examples	Illustrate the difference between polluted and pure air, water and land	State international standards for drinking water	
Learns about different types of Pollution and Pollutants	2.3 Types of pollution	Explains different types of pollution -air pollution -water pollution -land pollution			
	2.4 Types of pollutants	State different types of pollutants gaseous, liquid and solid pollutants.		Give examples for different types of pollutants.	
Understands the causes for pollution	2.5 causes for pollution	Explains different ways and m eans of pollution- effluents like oxides of S, Oxides of N, Oxides of C, burning of fossil fuels, CFCs, discharge of sewage, heavy metals, detergents, fertilizers etc	Diagram to explain different causes of pollution	Mention any two important causes for each type of pollution	
Understands the effects of pollution	2.6 Effects of pollution	Explains how acid rain is formed, Green house effect, and its consequence. Depletion of ozone layer by CFCs, substitution of "O" by "CO" in haemoglobin		What is the effect of pollution on Tajmahal	
Applies different skills to avoid pollution	2.7 General methods of prevention of environmental pollution	 Explains different ways and means of prevention of pollution. 1) Forestation encouragement 2) Encouraging the use of lean fuel, test certificates for 		What is acid rain?	

motor cycles
3) Compelling effluent
treatment in
industries
4) Preventing uses of
fossil fuels
5) Discouraging the
use of CFCs
6) Installation of
catalytic converters
to automobiles
7) Sewage treatment,
waste management
8) Avoiding usage of
synthetic pesticide
usage

UNIT III - GENERAL INTRODUCTION TO METALLURGY

Recalls the origin of elements	3.1 Ores and minerals	Defines ores and minerals and gives different types of ores	Ores of some important elements with composition	Differentiate ores and minerals
Analyses the various sources of minerals	3.2 Sources from earth, living system and in sea	Mention the elements present in earth's crust living system and sea	List showing various elements present in various sources	
Learns the purification methods of ores	3.3 Purification of ores- Oxide ores sulphide ores magnetic and non magnetic ores	Mention different types of purification of ores	Diagrammatic representation of magnetic separation and froth floatation methods	How the oxide ores are concentrated? Explain how sulphides and magnetic ores are concentrated.
Learns the metallurgical process	3.4 Metallurgical process	Gives the flow chart of metallurgical process		
	3.4.1 Roasting – oxidation	Explains the method of roasting	Explain the method of roasting and smelting with reference to carbonate and sulphide ore	What are the various chemical changes occur in roasting and in smelting
	3.4.2 Smelting – Reduction	Explains the method of smelting		
Learns the changes occurring in Bessemerisation	3.4.3 Bessemerisation	Explain the method of Bessemerisation	Diagrammatic representation of Bessemer converter and indicate the chemical changes in the manufacture of steel	Explain the principle of Bessemerisation
Importance of purification of metals	3.4.4 Purification of metals – electrolytic and vapour phase refining	Explain the methods of electrolytic refining and "mond's process".	List of metals which can be purified Cu, Au, Ag, Pb, Zn, Al by electrolytic method.	Explain zone refining and electrolytic refining

			Purification of Ni by "mond's process".		
Learns the occurrence of metals as ores	3.5 Mineral wealth of India	Mention the names of minerals and their occurrence in India	List showing the occurrence of ores in India and their location	Explain mineral wealth of Tamil Nadu	

UNIT IV - ATOMIC STRUCTURE - I

Recalls the historical approach of structure of atom.	4.1. Brief introduction of history of structure of atom.	Explains elementary ideas of structure of atom by Thomson and Rutherford.	Diagrammatic representation of various atomic models.	
Recognises the merits of Neils Bohr's model.	4.2. Defects of Rutherford's model and Niels Bohr's model of an atom	Mention various defects of Rutherford's model and give important postulates of Bohr's model of an atom.	Importance of Rutherford's model of an atom and discovery of nucleus.	Explain Rutherford's model and its main defect. Describe in detail about Niels Bohr's model of an atom.
Learns Sommerfeld's extension of atomic structure.	4.3. Sommerfeld's extension of atomic structure.	Mention the postulates of Sommerfeld.	Diagrammatic representation of Bohr-Sommerfeld.	Give an account of Sommerfield extension of atomic structure.
Analyses the significance of quantum number.	4.4. Electronic configuration and quantum numbers.	Explains the four different quantum numbers.	Exercises in assigning quantum numbers.	Explain the significance of quantum numbers.
Learns the shapes of orbitals.	4.5. Orbitals - shapes of s, p, and d orbitals.	Explanation of the shapes of orbitals.	Chart showing the shapes of s, p, and d orbitals.	Define orbital. Explain the shapes of s, p, and d orbitals.
Understands the quantum designation of electron.	4.6. Quantum designation of electron.	Method of representing quantum designation of an electron - nP ^x .	Giving various quantum designation of an electron.	For an electron $2p_x^2$ mention the quantum numbers.
Understands Pauli's exclusion principles.	4.7. Pauli's exclusion principle.	Defines Pauli's exclusion principle.	Importance of Pauli's exclusion principle is explained.	State Pauli's exclusion principle and explain with example.
Understands Hund's rule	4.8 Hund 's rule of maximum multiplicity	Defines Hund 's rule of maximum multiplicity	Diagrammatic representation of occupation of electron in p and d orbital	State and explain "Hund's rules"
Understands Aufbau principle	4.9 Aufbau principle	Defines Aufbau principle	Schematic representation of filling of orbitals by electron	What is "Aufbau principle"
Analysis the	4.10 Stability of	Explains the stability of	Extra ordinary	Explain the

stability of orbitals	orbitals	orbitals.	stability of half filled and completely filled should be emphasised with example.	nature of stability of orbitals.
	4.11 Classification of elements based on electronic configuration	Classification of elements as s- block, p- block, d-block, f-block elements.	Common electronic configuration of s,p,d and f block elements	How elements are classified based on electronic configuration.

UNIT V - PERIODIC CLASSIFICATION - I

Recalls the history of periodic classification Understands the IUPAC periodic table and its implications	 5.1 Brief history of periodic classification. 5.2 IUPAC periodic table and IUPAC nomenclature of elements with atomic number greater than 100. 	Brief historical approach -from Doberener's to Mendeleev Modern periodic law and important features of IUPAC periodic table	Salient features of each classification is explained Chart of IUPAC periodic table and table showing IUPAC nomenclature of elements with atomic no above 103.	State and explain Mendeleev's periodic law. Give the IUPAC name of the elements with atomic number 110,111,112.
Understands special feature modern periodic table in terms of electronic configuration.	5.3 Electronic configuration and periodic table	Classification of elements based on electronic configuration.	Electronic configuration of s,p,d and f block elements.	Write the electronic configuration of following elements. Rb,Ba,Br,Cr,Ni, Ce, Eu,Gd,U.
Analysis the gradation of properties along a period and down the group.	5.4 periodicity of properties	Trends of atomic radii, ionic radii, ionisation energy, electron affinity, electro negativity along the periods and down the group.	Graphical representation of gradation of the following properties among elements a) atomic volume b) atomic radii c) I.E d) E.A	Which of the following will have the most electron affinity P, S, CI, F. Explain your answer.
Analyse the anamolous properties of elements.	5.5 Anamolous periodic properties of elements.	Anamolous periodic properties in terms of screening constant, stability etc.	Reasons for anamolous periodic properties are explained.	Why B has lower I-E than Be? Compare I-E values of Cu & K.

UNIT VI - Group - I s-Block elements

Recalls isotopes and understands their nature and application.	6.1 Isotopes of hydrogen - Nature and application.	Mentions different isotopes of hydrogen Distinguishes the same. Their preparation and application of isotopes in different fields.	Diagrams to show structures of isotopes	What are the different isotopes of hydrogen? How deuterium is separated by Hertz diffusion method? How tritium is obtained from Li?
Differentiates ortho and para hydrogen	6.1.1ortho and para hydrogen.	Definition for ortho and parahydrogen. Separation - conversion -comparison.	Diagram to differentiate ortho and para hydrogen.	Define ortho and para hydrogen?
Gains knowledge about application of heavy water	6.1.2 Heavy water	Defines heavy water - methods of preparation- properties, comparison and applications.	Table of comparison between ordinary water and heavy water.	Mention important applications of heavy water?
Gains knowledge about hydrogen per oxide.	6.1.3 Hydrogen per oxide.	Explains preparation, properties and uses of hydrogen peroxide.		Explain any two oxiding and one reducing property of hydrogen peroxide.
Understands special features of hydrogen as a fuel	6.1.4. Liquid hydrogen as a fuel.	"Hydrogen economy" is explained - Advantages of hydrogen fuel.		What is hydrogen economy? What are the advantageous of hydrogen fuel?
Analyses general properties of alkali metals.	6.2 Alkali Metals	Position in the modern periodic table. Reasoning of name- alkali metals. Mention the element present in that group.	Diagram which shows the position of s-block in modern periodic table - Group - I	
	6.2.1General Characteristics	Explain electronic configuration, gradation and similarities in properties-density, IE, Atomic volume, melting point metallic character		Why alkali metals are found to possess high reducing properties?
Recognises the chemical properties	6.2.2. Chemical properties	Explains general chemical reactions with O_2 , H_2O , H_2 , X_2 ammonia etc.	Give Stoichiometric equation for all the reactions.	Write the chemical reaction of alkali metals with water.
Knowledge about oxides and hydroxides	6.2.3 Basic nature of oxides and hydroxides	Summary about the formation and basic nature of oxides and hydroxides of alkali metals	Equations to explain formation of oxides and hydroxides	How will you prove the basic nature of oxides of alkali metals?
Learns the extraction of alkali metals	6.3. Extraction of Lithium and Sodium.	Explains the methods of extraction of lithium and sodium from their chloride.	Diagrams of electrolytic methods	Explain how sodium is extracted from fused NaCl?

Recognises the properties and understands the uses of alkali metals	6.3.1. Properties and uses	Explains general physical and chemical properties of Lithium and sodium. Explains anomalous behavior of	Uses of Lithium and Sodium are listed.	How lithium differs from other alkali metals?	
		Lithium.			

UNIT VII - Group - II S-Block elements

Understands the general characteristics of II group elements and compares with I group.	7.1 General Characteristics	Explains general characteristics - Atomic Volume, atomic and lonic radii, I E, metallic character etc. compares with I group.		Why first ionization energy of alkaline earth metals higher than that of I group?
Applies knowledge of electrolysis for metal extraction.	7.2. Magnesium	Mentions ores explains the extraction of magnesium. Explains the properties and uses.	Diagrammatic representation of electrolytic process	What are the naturally occurring compounds of magnesium?
Knowledge about compounds of II group elements	7.3 Compounds of alkaline earth metals	Explains preparation, properties and uses of CaO, Plaster of paris, MgSO ₄	Illustrates the preparation and properties with equation	Mention the uses of Plaster of Paris?

UNIT VIII - p-Block elements

Understands the	8.1 General	Explain the general	Sketch showing	Explain the inert
general	characteristics of p-	electronic configuration,	the position of p-	pair effect of p-
characteristics of	block elements	Inert pair effect, nature	block elements in	block elements?
p-block elements		of halides, nature of	the modern	
		hydrides and nature of	periodic table.	
		oxides.		
Understands the	8.2 Group-13.	Explain the isolation of	Write balanced	Describe briefly
important ores of	Boron Group.	boron from its ores.	equation for the	how elemental
Boron and its			preparation of	boron can be
isolation	8.2.1 Important ores		elemental Boron	prepared?
	of Boron		by reduction of	
			BBr ₃ with	
	8.2.2. Isolation of		dihydrogen.	
	Boron- Properties			
Applies knowledge	8.2.3. Compounds	Borax, Boranes,	Diagrammatic	Describe what
for the preparation	of Boron-Borax,	diboranes, Borazole	representation of	happen when
and the properties	Boranes, diboranes,	preparation and	diborane and	Boric acid is
of Boron	Borazole-	properties are	Borazole.	heated?
compounds.	preparation,	explained with		Whathappens
	properties.	balanced equations.		when a borax
				solution is
				acidified?
Learns the uses of	8.2.4 User of Boron	Borax is used as flux,	List the uses of	What are the
boron and its	and its Compounds.	boric acid as antiseptic,	boron compounds.	uses of boric
Compounds.		boron fibers are used in		acid and borax?
		making light are		
Decella the		explained	Diagrammatia	Eveloin the
Recalls the	8.3 Carbon group -	Carbon exists in	Diagrammatic	Explain the difference in the
allotropes of	Group - 14.	several crystalline and	representation of	
Carbon, structural		amorphous forms,	diamond, graphite	properties of

differences of		including fulloronoo oon	and Structure of	diamond and
differences of graphite and diamond	8.3.1 Allotropes of carbon.	including fullerenes can be explained.	and Structure of C_{00} Buckminster fullerene.	diamond and graphite on the basis of their structure.
	8.3.2 Structural difference of graphite and diamond			
Acquires knowledge about Physical and Chemical Properties of oxides, Carbides, halides and sulphides of Carbon	8.3.3 General physical and chemical Properties of oxides, Carbides, halides and Sulphides of Carbon group.	Brief properties of Compounds of Carbon group are explained.	List the important uses of Carbon group compounds.	Why Silicon Carbide is used as an abrasive?
	8.4. Nitrogen - Group - 15.			
Learns the fixation of nitrogen.	8.4.1. Fixation of Nitrogen - natural and Industrial.	A brief idea about Haber's process in the manufacture of NH ₃ and the biological fixation nitrogen is impressed.	Diagrammatic representation of Nitrogen cycle and natural fixation of Nitrogen.	Write a note on Nitrogen cycle?
Understands the preparation of nitric acid	8.4.2 HNO ₃ - Ostwald process.	Explains the preparation of nitric acid by Ostwald process from ammonia explained with equations.	Diagrammatic representation of resonance structure of nitrate.	What is the reaction of nitric acid with Cu, and I ₂ ?
Recognises the uses of Nitrogen and its compounds	8.4.3. Uses of Nitrogen and its compounds	Liquid Nitrogen as a refrigerant, nitric acid used in the pickling of Stainless steel.		Describe the uses of ammonia and nitric acid.
Recognises the importance of molecular oxygen for all oxygenated animals	 8.5 Oxygen - Group -16. 8.5.1 Importance of molecular oxygen-cell fuel 	Importance of Molecular Oxygen as a cell fuel and the importance of hemoglobin as an oxygen carrier.	Block diagram of oxygen carrying tendency of hemoglobin.	How molecular oxygen is important for all oxygenated animals?
Proposes the difference between nascent oxygen and molecular oxygen.	8.5.2 Difference between nascent oxygen and molecular oxygen.	Impress the nascent oxygen for oxidation purposes and molecular oxygen for cell fuel.	Represent some oxidation reactions using nascent oxygen.	Give equation for the reaction of acidified K ₂ Cr ₂ O ₇ to give nascent oxygen
Recalls the important of oxides.	8.5.3 Oxides- classification, Acidic, basic, amphoteric, neutral and peroxide	Properties of oxides can be explained.	Equations explaining various properties of oxides are listed.	What are peroxides? In what way they differ from dioxides?
Realises the importance of ozone.	8.5.4. Ozone preparation, Property and structure.	Preparations of Ozone through ozoniser and formation of Ozone in the upper atmosphere by nature.	Equations explaining the formation of Ozone.	Explain the importance of Ozone on all living organisms on earth?
Understands the factors affecting Ozone layer.	8.5.5 Factors affecting Ozone layer.	Action of refrigerants on Ozone layer its effect on environment.	Ozone Structure	How Ozone layer protects the atmosphere?

UNIT IX - Solid State - I

Recognises the classification of Solids.	9.1 Classification of solids- amorphous, crystalline	Classifies solids as amorphous and crystalline solids.	Giving examples of amorphous solids and crystalline solids.	Distinguish between amorphous and crystalline solids.
Understands the concept of unit cell	9.2 Unit Cell	Defines a unit cell	Diagrams showing Sodium Chloride and caesium chloride unit cells.	Define a unit cell
Learns to identify the important planes in a cubic system in terms of miller indices.	9.3 Miller indices	Define Miller indices	Find the miller indices of planes in a cube.	Identify the following planes in a simple cube. (100), (010), (001), (110), (101), (011) and (111) planes.
Recognies different types of cubic Crystal systems	9.4 Types of lattices belong to cubic system.	Explains the simple cubic, body centered cubic and face centered cubic lattices.	Give example for each type of lattices	What are the lattices belonging to cubic system?

UNIT X - Gaseous State

Recognises the	10.1 Four important	Explains the properties	Express pressure,	Whatare
measurable	measurable	of gases like pressure,	Volume.	measurable
properties of	properties of gases.	volume, temperature	Temperature and	properties of
gases.	properties of gases.	and mass.	mass in different	gases?
yases.		and mass.	units.	gases:
Learns various	10.2 Gas laws and	Defines Boyle's law,	Represent the gas	What is molar
gas laws and	ideal gas equation.	Charles laws and	laws	volume of
combined gas		derives ideal gas	mathematically	nitrogen at 500K
equation.		equation.	and show P-V, V-	and 600
oquation.		oquation	P and T-V curves.	atm.according to
				ideal gas law?
Learns to express	10.3 Calculation of	Calculates the value of	Give the numerical	Give the values
universal gas	gas Constant "R"	universal gas constant	values of gas	of gas constant
constant "R" in	gue e eneraine i t	and express it in	constant in	in
different units		different units.	different units.	Calories/K/mole.
				J/K/mole.
				ergs/K/ mole, lt
				atm/K/mole.
Understands	10.4 Dalton's law of	Defines Dalton's law of	Express the partial	Calculate the
Dalton's law of	partial pressure.	partial pressure and	pressure in terms	partial pressure
partial pressure.	F F	calculates partial	ofmolefractions	of a mixture of
parta procedio.		pressure.		two moles of
		F		Nitrogen and 2
				moles of
				Hydrogen at
				STP?
Recognises	10.5 Graham's law	Defines Graham's law	Mathematical	Define
Graham's law of	of diffusion.	of diffusion of gases.	representation of	Graham's law of
diffusion.		, , , , , , , , , , , , , , , , , , ,	Graham's law of	diffusion.

			diffusion.	
Analyse the causes for deviation of real gases from ideality.	10.6 Causes for deviation of real gases from ideal behavior.	Explains the deviation due to volume occupied by gas molecules and presence of intermolecular forces.	Diagrams showing volume correction and pressure correction.	Explain the causes for deviation of real gases from ideal behavior.
Recognises the importance of Vanderwaal's equation.	10.7 Vanderwaal's equation of state.	Explains Vanderwaal's equation.	Give the significance of Vanderwaal's constants.	What are the units of Vanderwaal's constants a and b?
Analyses the critical phenomena	10.8 Critical Phenomena	Explains critical phenomena and defines critical constants and arrives the relation between critical and vanderwaal's constants.	Andrew's experiment - P-V isotherm of CO ₂ , Thomson's experiment - P-V isotherm of CO ₂ .	Deduce the relationship between critical constants and Vanderwaal's constants?
Recognises the concept of Joule- Thomson effect and inversion temperature	10.9 Joule-Thomson effect and inversion temperature.	Defines Joule-Thomson effect and inversion temperature.	Diagrammatic representation of Joule-Thomson effect.	Define Joule- Thomson effect.
Understands the method of liquefaction of gases	10.10 Liquefaction of gases. 10.10.1 Methods	Conditions for Liquefaction of gases. Linde's method,	Various condition for conversion of gas to liquid. Diagrams	What are conditions for the liquefaction of gases?
	of Liquefaction of gases.	Claude's Method, Adiabatic demagnetisation	explaining the liquefaction of gases.	Describe Claude's method of liquefaction of gases with diagram.

UNIT XI - Chemical Bonding

Recalls the basic theories on chemical bonding	11.1 Elementary theories on chemical bonding				
Recognises Kossel-Lewis approach	11.1.1 Kossel-Lewis approach	Explain the Kossel- Lewis concept in terms of inert gas electronic configuration.	Formation of NaCl and MgO	Illustrate octet rule by taking CO_2 and ethylene molecule as examples.	
Recalls octet rule	11.1.2 Octet rule	Explains Octet rule - attainment of 8 - electron configuration.	Examples to illustrate octet rule - CO ₂ ,N ₂ ,O ₂ ,CH ₂ =C H ₂		
Acquires knowledge about different types of bonds.	11.1.3 Types of bonds	Mention different types of bonds		What are the different types of bonds?	
Analyses the formation of ionic bonds.	11.2 Ionic bond	Explains the formation of ionic bond between electropositive and electronegative	Electron dot representation of formation of NaCl, CaO, MgF ₂ , AlBr ₃ ,	Explain the formation of ionic bond for AlBr ₃ and CaO.	

		elements	and AIN.	
Recognises the concept of lattice energy and its calculation	11.2.1 Lattice energy and calculation of lattice energy using Born- Haber cycle	Defines lattice energy. Explains the determination of lattice energy by Born-Haber cycle	Schematic representation of Born-Haber cycle for the solid MX	Calculate the lattice energy for NaCl using Born-Haber cycle.
Analyses the properties of ionic compounds	11.2.2 Properties of electrovalent compounds	Properties like physical state, solubility, melting point, boiling point and conductivity can be explained.		Discuss the important properties of electrovalent compound.
Recognises the concept of Co- valent bond based	11.3 Covalent bond			
on Lewis Structure	11.3.1 Lewis structure of Covalent bond.	Electron dot representation with reference to the molecules like Cl_2, O_2 ethane, ethylene, acetylene, and PH_3 .	Diagrammatic representation of Lewis structure of covalent compounds.	Give the electron dot representation for PH_3 and ethane.
	11.3.2 Properties of covalent compounds.	Explains the properties like melting point, boiling point, solubility and conductivity.		Explains the important properties of covalent compounds.
Analyses the Covalent character of ionic bonds	11.4.1 Fajan's rules	Explains the condition for the covalency of ionic bond.	Covalent character of compounds like AICI ₃	Discuss Fajan's rule.
Analyses the polarity of covalent bonds	11.4.2 Polarity of Covalent bonds	Explains the polarity of covalent bonds in terms of electronegativity.	Polarity of H ₂ O, HCI, HCN	Give the reason for the polarity of HCI molecule
Recognises VSEPR Model	11.5 VSEPR Model	Explains the concept of VSEPR model with suitable examples	Shapes of molecules like BeCl ₂ , BF ₃ , CH ₄ , NH ₃ ,H ₂ O, PCl ₅ , SF ₆	Give the shapes of the following molecule- CH_4 , NH_3 , H_2O , PCI_5
Understands the covalent bonding through VB theory	11.6 Covalent bond through valence bond approach	Explains the overlapping of orbital, and the concept of hybridisation.	Different types of overlapping - S-S, P-P and S-P and hybridisation- SP ³ , SP ² and SP are explained with examples.	What are the important features of VB theory? What is hybridisation?]
Learns the concept of resonance	11.7 Concept of resonance	Define the concept of resonance and explains the same with examples	Concept of resonance is illustrated with reference to molecules like $CO_{2}, O_{3} N_{2}O,$ CO_{3}^{2} and benzene.	Define resonance. Give the various resonance structure of CO ₂ .
Recalls the concept of coordinate covalent bond	11.8 coordinate covalent bond	Explains the coordinate covalent bond formation with examples.	Bonding in NH4Cl,H3N:BF3, Ni(CO)4	Explain the coordinate covalent bond with suitable example.

UNIT XII - COLLIGATIVE PROPERTIES

Recognises the concept of Colligative Properties	12.1 Concept of Colligative Properties and its scope.	Defines Colligative properties and mention its scope in the determination of molar mass of a non-volatile solute		What are Colligative properties? Give example.	
Understands the lowering of vapour pressure	12.2 Lowering of vapour pressure.	Explain the lowering of vapour pressure due to the dissolution of a non-volatile solute	Reasoning of lowering of vapour pressure of a dilute solution.	Give reason for lowering of vapour pressure.	
Recognises Raoult's law and its use in calculating molar mass	12.3 Raoult's law- Ostwald - walker method.	Defines Raoult's law and arriving the expression relating molar mass and relative lowering of vapour pressure.	Calculate the molar mass of non-volatile solute through Ostwald- Walker method.	Calculate the vapour pressure of the solution. The molefraction of the solute is 0.25. The vapour pressure of the pure solvent is 0.8	
Recognises the concept of depression of freezing point.	12.4 Depression of freezing point of dilute solution.	Explains the depression of freezing point of a solution due to the dissolution of non- volatile solute in a solvent.	Give equation relating molar mass and depression of freezing point.	What is the freezing point of solution containing 3g of a non-volatile solute in 20g of water. Freezing point of pure water is 273K, K _f of water=1.86 K Kg /mol. Molar mass of solute is 300g/mol.	
Learns the Beckmann method of determination of molar mass	12.4.1 Beckmann method	Describes the experimental method of determining molar mass of non-volatile solute using Beckmann method.	Diagram showing Beckmann method using Beckmann thermometer.	Describe Beckmann method.	
Recognises the concept of elevation of boiling point	12.5 Elevation of boiling point of dilute solution.	Explains the elevation of boiling point of a solvent due to the dissolution of non- volatile solute	Give equation relating molar mass and elevation of boiling point	Deduce the relationship between elevation of boiling point of molar mass	
Learns the Cotrell's method of determination of molar mass	12.5.1 Cotrell's method.	Describes the experimental method of determining molar mass of non-volatile solute using Cotrell's method	Diagram showing Cotrell's method	Describe Cotrell's method of determining the boiling point of liquid.	
Recalls the concept Osmosis	12.6. Osmotic pressure	Explains the concept of osmosis and defines Osmotic pressure.	Diagram showing the process of osmosis.	What is Osmotic pressure?	
	12.6.1 Laws of Osmotic pressure	Defines the laws of Osmotic pressures and mathematical expressions of the same.	Give equation relating molar mass and Osmotic pressure	Deduce the relationship between Osmotic pressure	

				and concentration.	
Learns the Berkley	12.6.2. Berkley-	Describes the Berkley-	Diagram of	Describe	
Hartley's method.	Hartley's method.	Hartley's method of	Berkley-Hartley's	Berkley-	
		determining Osmotic	apparatus.	Hartley's	
		pressure.		method.	
Understands the	12.7 Abnormal	Explains the reasons	Give equations for	Define Van't	
reason for	colligative properties	for abnormal colligative	Van't Hoff factor	Hoff factor and	
abnormal	Van't Hoff factor and	properties and explain	and degree of	relate it with	
Colligative	degree of	with examples.	dissociation.	degree of	
properties.	dissociation			dissociation.	

UNIT XIII - Thermodynamics - I

Recognises the scope of thermodynamics	13.1 Thermodynamics- Scope	Possibility of a process can be predicted.		
Understands various terminology used in thermodynamics	13.2 Terminology used in thermodynamics	Defines systems, surroundings, types of systems, lsothermal and adiabatic process intensive and extensive properties, state functions, path functions, spontaneous and non-spontaneous process, exothermic and endothermic process.	Each term is explained with suitable examples.	Define system and surroundings. What are state functions?
Understands the nature of thermodynamic properties.	13.3 Thermodynamic properties -nature	Dependence on initial and final states of the system can be emphasized.	Dependency on the states of the system can be explained with illustration.	Differentiate path and state functions.
Learns Zeroth laws of Thermodynamics	13.3.1. Zeroth law of thermodynamics	Defines Zeroth law of thermodynamics.	Temperature is defined	Define Zeroth law of Thermodynamic s.
Knowledge about the I law of thermodynamics.	13.3.2. First law of thermodynamics	Statement and its significance	Importance of law of conservation of energy is emphasised.	State the law of Conservation of energy.
Understands the concept of internal energy.	13.3.3. Internal energy	Defines internal energy and explain the factors contributing the internal energy	All the components of internal energy can be explained.	What are the factors contributing the internal energy?
Gains Knowledge about the concept of enthalpy	13.3.4 Enthalpy	Explains the concept of enthalpy.	The dependence of enthalpy on temperature is impressed.	What is enthalpy of a reaction? What is standard enthalpy?
Finds the relation between ?H and ?E	13.3.5. Relation between ? H and ?E	Derives the relationship between ?H and ?E	Apply the equation relating ? H and ? E to systems involving solids, liquids and gases.	Derive the relation between ?H and ?E.
	13.3.6 Mathematical form of First law	Gives the equation ? E = q-w.	Qualitative explanation of arriving the equation	Write mathematical expression of I

			?E=q-w.	law of thermodynamics
Recognises the enthalpy of transition.	13.3.7. Enthalpy of transition.	Defines the enthalpy of fusion, enthalpy of vapourisation and enthalpy of sublimation. Defines the enthalpy of	Illustrate with the following transitions. $H_2O_{(s)}$? $H_2O_{(l)}$? $H_2O_{(g)}$ $I_{2(s)}$? $I_{2(g)}$	Define the enthalpy of fusion and enthalpy of vapourisation.
	13.3.8. Enthalpy of formation.	formation and standard enthalpy of formation. Define enthalpy of combustion.	Calculation of enthalpy of formation of CO_2 H_2O and CH_4	Define standard enthalpy of formation.
	Combustion.	Defines enthalpy of neutralisation and explains the constancy of enthalpy of neutrailisation of strong acid by a strong base and variation of enthalphy of neutralisation of weak acid by a strong base and vice versa.	Experimental determination of enthalpy of combustion by bomb calorimeter. 1) HCl + NaOH ? NaCl + H_2O 2) CH ₃ COOH + NaOH ? CH ₃ COONa + H_2O 3) HCl + NH ₄ OH ? NH ₄ Cl+H ₂ O Illustrate with the above neutralisation reaction.	How will you determine enthalpy of combustion? Why is enthalpy of neutralisation of weak acid by a strong bases less than 57.32? Define enthalpy of neutralisation.
Understands various sources of energy. Understands the need for the non- conventional energy resources.	13.4 Various sources of energy 13.4.1. Non- conventional energy resources.	Giving various sources of energy like solar energy, thermal energy, atomic energy, electrical energy, hydrolic energy.1.Conversion of solar energy into thermal energy, light energy etc.2.Electrical energy	Importance of non-conventional energy resources is impressed.	State various sources of energy. How is electrical energy generated from wind mills and tides.

UNIT XIV - CHEMICAL EQUILIBRIUM - I

Understands the	14.1 Scope of	To study the extent of			
scope of chemical equilibrium	Chemical Equilibrium.	completeness of chemical reactions			
Recall reversible and irreversible nature of reactions and chemical equilibrium in physical and chemical process	14.2 Reversible and irreversible reactions	Reactions explaining reversible and irreversible reactions	Examples for reversible and irreversible reactions.	What are reversible and irreversible reactions?	
	14.2.1 Nature of chemical equilibrium	Explains the dynamic nature of chemical equilibrium		Why is chemical equilibrium called as dynamic equilibrium	
	14.2.2 Equilibrium in physical process	Explains the equilibrium in physical changes	Illustrate to the transition of Solid = Solid Solid = Liquid Liquid = Vapour	Explains the equilibrium in physical and chemical process with examples	
	14.2.3 Equilibrium in chemical process	Explains the equilibrium in chemical changes	Chemical equilibrium in homogeneous and heterogeneous systems can be explained with example.		
Understands the law of chemical equilibrium applicable to different types of chemical reactions	14.3 Law of chemical equilibrium and equilibrium constant	Defines the law of chemical equilibrium and expressions for equilibrium constant and gives the significance of equilibrium constants.	Express equilibrium constant in terms of concentration and partial pressures and derive the relationship between them.	Define law of mass action. Derive the relationship between Kp and Kc.	
	14.3.1 Homogeneous equilibria	Explain equilibria in solution and gas phase.	Write expressions for equilibrium constants for homogenous equilibria	Deduce the equilibrium constant for the formation of hydrogen iodide from hydrogen and lodine	
	14.3.2 Heterogeneous equilibria	Explains heterogeneous equilibria with examples	Write expression for equilibrium constant for heterogeneous equilibria	What is heterogeneous equilibria? Give examples	

UNIT XV - CHEMICAL KINETICS - I

Recognises the scope of studying rate of reactions	15.1 Scope	To study the mechanism of reactions	Importance of mechanism of chemical reactions		
Analyses the concept of rate and factors	15.1.1 Rate of chemical reactions	Defines the rate of chemical reactions and factors affecting the	Mathematical representation of rate with reference	Define rate of reactions and give the factors	
affecting it		rate of reactions	to common	affecting it.	

			reactions		
Recognises the concept of rate law	15.1.2 Rate law and rate determining step	Write the rate laws and explains the specific rate	Examples of certain measurable rate reaction and apply rate law.	Define rate law and rate constant	
Learns to calculate reaction rate from rate law	15.1.3 Calculation of reaction rate from the rate law	Calculates the reaction rate from rate law	Numerical problems	Decomposition of N_2O_5 occurs in the following manner. $2N_2O_5 \not \simeq 4NO_2$ + O_2 Write various formulae expressing the rate of reaction	
Analyses the difference between order and molecularity	15.2 Order and molecularity of the reactions 15.3 Calculation of exponents of a rate law	Defines order and molecularity and differentiates them		Distinguish between order and molecularity?	
Analyses the chemical reactions on the basis of their order	15.4 Classification of rates based on order of the reactions	Explains Zero, first, second, third fractional and pseudo first order reactions	Give examples for each type of reactions	How are reactions classified?	

UNIT XVI - BASIC CONCEPTS OF ORGANIC CHEMISTRY

Knowledge about catenation	16.1. Catenation	Define catenation Explains with suitable examples		How carbon is able to form innumerous number of compounds
Understands classification of organic compounds	16.2 Classification of organic compounds	Different types of organic compounds like aliphatic , aromatic, mono cyclic, hetero cyclic, alicyclic compounds are explained with suitable examples	Schematic representation of classification of organic compounds	Explain the classification of organic compounds with suitable examples
Recalls different kinds of functional groups	16.3 Functional groups	Defines functional groups, functional groups of different organic compounds are identified.	Mentioning the functional groups of different compounds - chart	Give the functional groups of the following compounds a) alcohol b) Ketone c) Carboxylic acid d) Aldehyde e) Ester
Knowledge of IUPAC nomenclature and its significance	Nomenclature	Need for IUPAC nomenclature of organic compounds is emphasised Method of writing IUPAC names of different organic compounds are	Tables showing basic pattern of IUPAC – name and common names of different Organic compounds	Write the IUPAC names of the following compounds a)CH ₃ OH b)CH ₃ COCH ₃ c)CH ₃ OCH ₃ d)CH ₃ COOCH ₃

		explained with suitable examples		e)HCOOH
Understands the different types of isomerism present in organic compounds	16.5 Isomerism	Defines isomerism – explains the different types of isomerism – chain, position,- functional isomerism with examples	Diagrammatic representation wherever it is necessary	Identify the types of isomerism found in the following pairs a)1-butanol and 2-methyl-1- ropanol b)1,2- dichlorobenzene and 1,4- dichlorobenzene c)propanal and propanone
Understands the different types of Organic reactions	16.6 Types of organic reactions	Explains the following reactions with examples -substitution, addition, elimination condensation, polymerisation, hydrolysis oxidation and reduction reactions		Explain the following with an example a) addition reaction b) elimination reaction c) hydrolysis d) condensatio n reaction e) reduction reaction
Knowledge about different types fission of chemical bond	16.7 Fission of bonds	Explains homolytic and heterolytic fission with example	Homolytic - radicals Hetrolytic -ions	What are the two types of fission?
Knowledge about electrophiles and nucleophiles	16.7.1 Electrophiles and nucleophiles	Defines electrophile and examples are given Define nucleophile and examples are given	Equation which shows the attack of electrophile and nucleophile	Give 2 example each for nucleophile and electrophile
Understands the formation of carbonium ion and carbanion	16.7.2 Carbonium ion Carbanion	The formation of carbonium and carbanion are explained along with their hybridisation and structure	Sketch shows the structure of carbanion and carbonium ion	
Understands free radical mechanism	16.8 Free radicals	Formation of free radicals in homolytic fission – explanation- chain reaction of chlorination of methane	Chart showing initiation, propagationand termination steps	Explain the chlorination of methane with free radical mechanism
Knowledge about different types of inductive effect	Electron displacement in covalent bond	Explains inductive and mesomeric effects of different group involved in covalent bond	Figure explanation shows +I and –I effects of different groups	Indicate why halo and OH groups are o-, p- directing whereas "NO ₂ " group is meta directing. Explain with reference to electron displacement.

UNIT XVII - PURIFICATION OF ORGANIC COMPOUDS

Learns the characteristics of organic compounds	17.1 Characteristics of organic compounds	States the physical properties of organic compounds -Soluble in organic solvents -insoluble in polar solvents -volatile in nature -low m.pt and b.pt Need for purification	Difference between organic and inorganic compounds in physical properties is illustrated	Explain the physical properties of organic compounds?	
Knowledge of crystallisation	17.2 Crystallisation	Defines Crystallisation Different steps involved in Crystallisation- different organic solvents	Performs experiments to demonstrate the technique	What are the steps involved in crystallisation?	
	17.2.1 Fractional Crystallisation	Explains the separation of substances with different solubilities in the same solvent		Predict a method to separate a mixture in solutions containing two solids with different solubilities.	
Knowledge of sublimation	17.3 Sublimation	Defines sublimation – - Sublimating substances - Method of purifying substances using sublimation	Schematic diagram	How are iodine and naphthalene purified?	
	17.4 Distillation	Defines distillation	Pictorial		
Understands fractional distillation	17.4.1 Fractional distillation	Explains the method of purifying liquids with different boiling point with suitable examples	representation Diagrammatic representation	How is the mixture of alcohol and water purified?	
Learns steam distillation	17.4.2 Steam distillation	Principle & procedure	Diagrams showing experimental set up	How is aniline purified?	
Learns the principle of these techniques and their applications to purify simple organic compounds	17.5 Chromatography	Defines chromatography principle-different types of chromatography. Adsorption – column, thin layer-partition.	Diagrammatic representation of column, thin layer – chromatogram, and developed chromatogram	Explain the principle of paper chromatography ?	

UNIT XVIII - DETECTION AND ESTIMATION OF ELEMENTS

Expected specific outcome of Learning	Contents in terms of concepts	Curriculum transactional strategies	Illustrations	Evaluation	Sugge sted no. of period s
Learns the principle of detection and estimation of elements in	18.1 Detection of carbon and hydrogen	The method of detection of carbon and hydrogen in organic compound. The reactions involved	Diagrammatic representation of detection of carbon and Hydrogen.	How are carbon and hydrogen detected in an organic compound?	

organic compounds		in detection		
	18.2 Detection of Nitrogen	Lassaigne' s Test Preparation of sodium fusion extract- experimental reactions- Detection of both sulphur and nitrogen	Identifies N, S, halogens in simple organic compounds by qualitative tests.	Give the formula of Prussian blue in Lassaigne' s Test?
	18.3 Detection of halogens	Lassaigne's Test and the reactions involved		What is the colour of silver iodide.
	18.4 Detection of sulphur	Sodium fusion extract. Experiments – reactions involved	Equations for the reactions are illustrated	How is sulphur detected?
	18.5 Estimation of carbon and hydrogen	Principle-Apparatus- procedure-calculations for percentage of carbon and hydrogen problems based on the percentage of carbon and hydrogen	Diagrams showing experimental set up of this technique.	Numerical problems are asked.
	18.6 Estimation of Nitrogen	Kjeldahl's method principle – procedure calculations-problems based on percentage of nitrogen in organic compounds	Schematic representation of Kjeldahl' s method.	How is nitrogen estimated by Kjeldahl' s method
	18.7 Estimation of sulphur	Carius method calculations, problems based on estimation of sulphur	Pictorial representation	How is sulphur estimated
	18.8 Estimation of halogens	Carius method – Principle-procedure- Calculation-problems based on the estimation of halogens	Schematic diagram to explain the process	Numerical problem based on this method

UNIT XIX - HYDROCARBONS

Learns the classification of hydrocarbons Learns the IUPAC rules of nomenclature of alkanes.	19.1 Classification of Hydrocarbons 19.2 IUPAC nomenclature	Classification into aliphatic and aromatic, alicyclic. IUPAC nomenclature of aliphatic saturated hydrocarbons	Chart showing the classification of hydrcarbons Mention the names of IUPAC nomenclature of hydrocarbons	Write structures of the following compounds based on IUPAC rules i) 2,2,3 trimethyl butane ii) 3-ethyl-2- methyl pentane	
	19.3 Sources of alkanes	Gives important sources of alkanes			
Recognises the methods of preparations of alkanes	19.4 General methods of preparation of alkanes	Explains various methods of preparation of alkanes 1) Reduction of unsat. Hydrocarbons 2)Reduction of alkyl halides 3)Decarboxylation of	Represent the methods of preparation with suitable chemical equations	Write any five methods of preparation of alkanes.	

		fatty acids 4)Kolbe's electrolytic method 5)Wurtz reaction			
Understands the physical properties of alkanes	19.5.Physical properties	Mention the physical properties - m.p and b.p and their variation with molar masses solubility		Why branched alkanes possess lower melting and boiling point than corresponding straight chain alkanes?	
Analyses the chemical properties of alkanes	19.5.1 Chemical properties	Explains the chemical properties like combustion, substitution polymerisation	Give the chemical equations of the reactions	Explain substitution reaction of alkanes	
Understands different conformations of alkanes	19.6 conformations of alkanes	Explain the concept of conformation with reference to ethane, propane, n-butane and cyclohexane	Give different conformations of ethane, propane, n-butane and cyclohexane	Draw different conformations of n-butane and cyclohexane	
Gains knowledge about alkenes and their IUPAC nomenclature	19.7 Alkenes	Sources			
	19.8 IUPAC nomenclature of alkenes	Gives the IUPAC rules of nomenclature of alkenes	List of alkenes with IUPAC names.	Give the IUPAC names of the following a) CH_3CH_2 $CH-CH=CH_2$ CH ₃ b) CH_3 $CH=CH-CH_2$ CI	
Understands general mehtods of preparation of alkenes	19.9 General methods of preparation	Explains the following genereal methods of preparation i)dehydration of alcohols ii)dehydro halogenation of alkyl halides iii)hydrogenation of alkynes	Represent the reactions with suitable chemical equations	How will you obtain propene from i)n-propyl alcohol ii)n-propyl bromide ?	
Learns Physical and chemical properties of alkenes	19.9.1)Physical Properties	Mentions important physical properties			
	19.9.2) Chemical Properties	Explains the following characteristic reactions of alkenes i)addition reactions ii)polymerisation reaction	Represent the reactions with suitable chemical equations Explain 1,2- and 1,4- addition to butadienes	Explain Markovnikov's rule and peroxide effect with examples.	

	19.9.3) Uses	Mentions important uses of alkenes		Mention the uses of ethene	
Recalls the preliminary ideas about alkynes	19.10 Alkynes	Fundamental ideas like C ? C bond, C _n H _{2n-} 2 etc.			
	19.11 IUPAC Nomenclature of alkynes	Mentions the rules of IUPAC nomenclature of alkynes	List of alkynes with IUPAC names	Give the structures of the following compounds i)Propyne ii)2-butyne iii)4-methyl-2- pentyne	
Understands preparation and properties of alkynes	19.12 General methods of preparation	Gives the general methods of preparation	Represent with suitable chemical reactions		
	19.13. Physical Properties	Mentions important physical properties			
	19.13.1 Chemical properties	Explains the following reactions with examples i)addition reactions ii)reactions of acidic hydrogen iii)Polymerisation	Represent the reactions with suitable chemical equations	Discuss the reactions of acidic hydrogen in acetylene	
	19.13.2 Uses	Mentions important uses of alkynes		What are the uses of acetylene?	

UNIT XX - AROMATIC HYDROCARBONS

Introduces Aromatic hydrocarbons	20 Aromatic Hydrocarbons	Benzene, Tolune, Napthalene and Anthracene	Give the Structures of the compounds.	Give the structures of naphthalene and toluene	
Knows the naming of aromatic hydrocarbons	20.1 IUPAC nomenclature of aromatic hydrocarbons	IUPAC Naming of mono, di & tri substituted benzene derivatives			
Understands the concept of resonance in benzene	20.1.1 Structure of Benzene	Resonance Structure- (Modern concept), Delocalisation, Huckel's (4n+2) rule.	Explains various concepts of structure of benzene and its aromaticity	Discuss the structure of Benzene	
Recognises the orientation effect of substituents on the benzene ring	20.1.2 Orientation of substituents on the benzene ring	Explains the nature of orientation of functional groups on the benzene rings.	Explanation the electronic effects of different functional groups on the orientation of substituents	Give examples of ortho-para directing and meta directing groups	
Learns different methods of preparation of benzene	20.2.1 Commercial preparation of benzene	Benzene from coal tar Describes the method.		Describe the preparation of benzene from coal tar.	

	20.2. General methods of preparation of Benzene and its homologues.	Gives different methods of preparation of benzene	Represent the reactions with chemical equations	How will you prepare Benzene from the following. i)aromatic acids ii)alkyl benzene	
Recognises the physical and chemical properties of benzene	20.3. Physical properties	Mentions physical properties			
	20.3.1 Chemical properties	Explains electrophilic substitution reactions on benzene ring	Explanation mechanism of electrophilic substitution reaction with suitable chemical equations	Write notes on the following i)Halogenation ii)Nitration iii)Friedel-Craft's alkylation iv)Sulphonation	
	20.3.2 Uses	Mention the uses of benzene			
Recognises the carcinogenic and toxic nature of polynuclear hydrocarbons	20.4 Carcinogenic and toxic nature	Mentions carcinogenic and toxic polynuclear hydrocarbons	List the polynuclear hydrocarbons which are toxic	Give some examples of carcinogenic and toxic polynuclear hydrocarbons	

UNIT XXI - ORGANIC HALOGEN COMPOUNDS

Understands the classification of organic halogen compounds	21.1 Classification of organic halogen compounds	Classifies into i) alkyl halides ii) aryl halides iii) aralkyl halides iv) classify into 1 ⁰ ,2 ⁰ and 3 ⁰ alkyl halides		Give examples of each type of organic halides
Learns the IUPAC nomenclature of alkyl halides	21.2 IUPAC nomenclature of alkyl halides.	Gives IUPAC names of common alkyl halides.		Give IUPAC names a) Methyl bromide b) Sec. butyl iodide.
	21.3 General methods of preparation.	Mentions important general methods of preparation.	Explains with suitable chemical equations	How will you prepare ethyl bromide from 1) ethanol 2) ethane
Understands preparation and properties of alkyl halides	21.4 Properties	Order of reactivity of different halides is mentioned. Explain the substitution, elimination and reduction reactions.	Represents the reactions with chemical equations	How will you prepare the following from alkyl halides? 1) alkenes 2) alcohols 3) ethylbenzen e

Understands the mechanism of nucleophilic substitution reaction and elimination reaction.	21.5 Nucleophilic substitution reactions	SN2 reactions- Primary halides undergo SN2 reactions. SN1 reactions – tertiary halides undergo SN1 reactions	Mechanistic paths are represented. Mentions the dependency of rate on concentration order of the reactions.	Discuss SN2 and SN1 reactions.
	21.6 Elimination reactions.	Mechanisms of E2 and E1 eliminations are explained with suitable examples.		Write notes on elimination reactions of alkyl halides.
	21.7 uses	Mentions important uses of alkyl halides		What are the uses of alkyl halides?
	21.8 Aryl halide	Types of aryl halides		
Gains the knowledge of preparation of ary halides	21.9 General methods of preparation.	Preparation by direct halogenation and decomposition of diazonium salts are explained.	Represent the reactions with chemical equations.	Give two methods of preparation of chlorobenzene.
Analyses the properties of arylhalides	21.10 Properties	Reactions due to aromatic ring and the halogen atom	Represent the reactions with chemical equations.	How will you convert chlorobenzene into 1) ethylbenzen e 2) o- and p-di chlorobenze ne
	21.11 Uses	Mentions the uses of aryl halides.		
Gains knowledge about aralkyl halides	21.12 Aralkyl halides	Benzyl chloride – preparaion	Gives the chemical reactions.	How will you prepare benzyl chloride from toluene and benzyl alcohol?
	21.12.1 Comparsion arylhaldies and aralkyl halides.	Comparsion of nuclear and side chain derivatives of halides	Table showing the difference between aryl halide and aralkyl halide	
	21.13 Grignard reagents.	General formula and nomenclature		Mention the formula and structure of methyl magnesium iodide and phenyl magnesium iodide.
	21.13.1 Preparation	Preparations of methyl magnesium iodide	Describe the method of preparation.	How will you prepare methyl magnesium iodide.
Analyses the synthetic uses of Grignard reagent.	21.13.2 Synthetic uses.	Mentions various synthetic uses of methyl magnesium iodide.	Gives the chemical equations.	How will you prepare the followings from methyl

	r	nagnesium
		promide.
	1) isopropyl
		alcohol
		e
	3	3) ethylacetal.

CHEMISTRY PRACTICALS FOR STD XI

I. Knowledge of using Burette, Pipette and use of logarithms is to be demonstrated.

II. Preparation of Compounds.

- 1. Copper Sulphate Crystals from amorphous copper sulphate solutions
- 2. Preparation of Mohr's Salt
- 3. Preparation of Aspirin
- 4. Preparatrion of lodoform
- 5. Prepartion of tetrammine copper(II) sulphate
- III. Identification of one cation and one anion from the following. (Insoluble salt should not be given)

Cation:- Pb⁺⁺, Cu⁺⁺, Al⁺⁺, Mn²⁺, Zn⁺⁺, Ca⁺⁺, Ba⁺⁺, Mg⁺⁺, NH₄⁺ Anions:- Borate, Sulphide, Sulphate, Carbonate, Nitrate, Chloride, Bromide.

IV. Determination of Melting point of a low melting solid.

V. Acidimetry Vs Alkalimetry

- 1. Preparation of Standard solution of Oxalic and Sodium Carbonate solution.
- 2. Titration HCI Vs NaOH
- 3. Titration HCI Vs Na₂CO₃
- 4. Titration Oxalic acid Vs NaOH

Mode of Examination

1. 2. 3. 4.	Volumetricanalysis		(05) (10) (15) (20)
		Total	50