HIGHER SECONDARY MATHEMATICS – XI STANDARD

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
1.1	Divisibility in integers	Illustration c/b, b/a =>c/a; c/a, c/b=>c/(a+b) GCD and Euclidean algorithm:	Approach through elementary examples Fundamental Theorem of Arithmetic to be stated and illustrated	
		Recognising algebraically well- ordered sets; providing simple facts on prime numbers. Euler's function ? (n)		20
1.2	Numbers bases	Expressing positive integer using different bases Manipulation of change of bases Expressing rational numbers in decimal notation (by the method of successive remainders)	Only binary, base 8 and base 16 to be used for illustration	
1.3	Number of congruence	Defining congruence relation in integers; recognizing \equiv as equivalence relation	Using the concept of congruence to explain tests of divisibility by 2,3,4,6,7 and 8	

1. ELEMENTARY NUMBER THEORY

1.4	Diphantine equations	Identifying the special nature of such equations. Applying the concept to primitive solutions of Pythagorean	Contribution of ancient Indian mathematicians in this field to be highlighted.	
		equation		
1.5	Some famous theorems	Statement and verification of (i) Fermat' s theorem, (ii) Wilson' s theorem, and (iii) Chinese Remainder theorem	Approach through simple numeric examples no proof to be given	

1. COUNTING TECHNIQUES

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
2.1	Basic principles	i.Addition: If S=? Y S _i where S _i are disjoint, n(S) = ? $n(S_i)$ ii.Product n(A) = p, n(B) = q, a?A, b?A, b?B=> n(a,b)=pq iii.Inclusion & Exclusion n(AUB) = n(A)+n(B)-n(AnB) iv.Pigeonhole principle (Satement only)	Use of Venn diagrams and tree diagrams to illustrate the principles	20
2.2	Permutati ons	Derivation and application of formulat _n P _r Applying permutation of repeated objects to solve problems. Computing circular permutations	After initial derivation, factorial notation to be used for simplification	

2.3	Combinati	Derivation of value	Use of Pascal's triangle to be encouraged	
	ons	of _n C _r	for easy understanding	
		Application of the		
		formula derive above		
2.4	Inductions	Stating and	Know formula for $? n$, $? n^2$, $? n^3$ to be used	
		interpreting the	for motivation.	
		principle of	Skill of summation when n-th term of a	
		mathematical	sequence is given to be introduced	
		inductions.		
		Using it to prove		
		formulae and facts		
		Summation using ? n,		
		$? n^2, ? n^3$		
2.5	Binomial	Statement and proof	The pattern of coefficients in a binomial	1
	Theorem	for a natural number	expansion to be elicited from students	
		index Identifying the		
		relation among		
		binomial coefficients.		

2. MATRICS AND DETERMINANTS

S.No.	Content	Expected	Transactional Strategy	No. of
		Outcome		Periods
3.1	Matrix	Defining a matrix and	Illustrations and problems to be limited to	
	Algebra	identifying various	3 rd order matrices only	
	(with	types of matrices;		
	entries in	computing order of a		
	R)	matrix;		
	, ,	Performing Addition,		
		Scalar multiplication		
		and finding the		
		product of matrices		
3.2	Determinants	Evaluating	Problems illustrating the properties to be	
		determinant of a	chosen for examples and exercise.	
		matrix (of order	-	15
		not more than 3 by		15
		3), using properties		
		of determinants in		
		evaluating a		
		determinant.		
		multiplying two		
		determinants		
3.3	Inverse	Given a matrix (of	Question of existence to be discussed.	1
	matrix	order not more		
		than 3×3 to		
		compute its		
		inverse, if it exists.		

3. ANALYTICAL GEOMETRY

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
4.1	Loci	Defining Loci and solving loci problems	Pure geometrical notions to be starting points	
4.2	Equations of lines	Point-slope, slope- intercept, two points x-y intercepts, normal, parametric and general forms Computing length of perpendicular from (i) origin (ii) any point to a line	Graphical illustration to be given for better understanding of concepts	
4.3	Family of lines	Solving problems connected with (i) concurrent lines, (ii) perpendicular lines, (iii) parallel lines and (iv) bisector lines. Equation of a pair of lines and its interpretation	Illustrating how coordinatisation simplifies location of points of concurrence.	
4.4	Equation of circles	Treating circle as a locus; deriving Equation $x^2+y^2=a^2$. diameter end points form, and the general from $x^2+y^2+2gx+2fy+c=0$	Illustrating with simple problem to derive the equation, to find the center, radius etc.	25
4.5	Tangents	Deriving equation of tangent to a circle, computing the length of tangent segment, obtaining condition for tangency of a line and deriving the equation of chord of contact.	Comparison with pure geometrical approach.	
4.6	Family of circles	Verifying conditions for circles to be (i) concerntric, (ii) touching and (iii) orthogonal.	Graphical illustration for making the concepts clear.	

4.	ANALYTICAL	GEOMETRY
----	------------	----------

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
5.1	Concept of a sequence	Defining a sequence (i) by a rule, (ii) by a recursive relation. Defining and identifying the limit of a sequences. Discriminating bounded and unbounded sequences.	Idea of limit to be introduced by geometrically representing the terms of a sequene	15
5.2	Summation of series	Statement of (i) Binomial series for a rational index (ii) Exponential series and (iii) logarithmic series	Using in summations and computing approximate values.	

5. TRIGONOMETRY

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
6.1	Trigonomotr	Doriving standard	Unit airely approach to be used and	Periods
0.1	ingonomeu			
	ic Identifies	identities and	diagrammatic interpretation given	
		applying them to		25
		simple situations to		
		arrive at interesting		
		results		
6.2	Signs of T-	Identifying the	Treatment specific to $(? -)$, $(90\pm??)$,	
	ratios.	dependence on the	(180+?), (270+??)	
		quadrant in which		
		the angle terminates		
		and fixings the sign		
6.3	Compound	Deriving addition	Investigation such as: Is $\sin(30^{\circ} + 60^{\circ}) =$	
	angles	formulae for	$\sin 30^{\circ} + \sin 60^{\circ}$ to be used for motivation.	
		(A <u>+</u> B), (A+B+C),		
		multiple angles 2?,		
		3? and sub-multiple		
		angles like A/2.		
		Use of		
		transformation of		
		sums and products		

6.4	Trigonometr	Solving equations	Restrictions for the solution set to be	
	ic Equations	of types: sin? =	clearly brought out with examples.	
		sin??		
		$\cos? = \cos?$,		
		Tan=Tan, acos?		
		+bsin? =c		
6.5	Inverse	Defining the	Need for clear specification of domain to	
	trigonometri	functions and	be illustrated	
	c functions	deriving simple		
		relations between		
		them		
6.6	Properties	Deriving	Applying these formulae to derive	
	of triangles	conditional	standard results regarding triangles	
		identities		
		(if(A+B+C=?))		
		deriving Sine,		
		Cosine, Napier,		
		Area, Projection		
		formulae		
6.7	Solution of	Solving SSS, SAS,	Problems to be very simple just to	
	triangles	SAA, SSA types.	illustrate the concept.	
		(Ambiguous case		
		excluded)		

6. FUNCTIONS AND THEIR GRAPHS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
7.1	Function of a Real variable	Discriminating constants and variables; classifying intervals as open and closed: defining a ' neighbourhood' Defining a function in several ways. Representation of a function in tabular. Graphical and	Approach through numerical illustrations. Function as (i) a rule and as (ii) a set of ordered pairs. Identifying the domain, codomain, range and image through several examples. Vertical line tests for a function	25
7.2	Constant	formula forms.	Entire concents to be approached through	
1.2	function and	function	several examples of graphical	
	linear	Computing the	illustrations	
	function	slope of a linear		
		function		

7.3	Quadratic and cubic functions	Explaining real and imaginary roots of a quadratic equation through graph of the quadratic function with simulatanceous use of discriminant' Graphing a cubic function with special emphasis on	Manipulations like moving a graph up or down, left or right, stretching /contracting vertically or horizontally. Reflecting in x axis y axis / origin explained through quadratic graph	
7.4	Polynomial functions	Illustration with cubic polynomials: computing approximate roots (zeros) of a non- linear, non- quadratic function.	Adoption of ' trial and improvement' method (method of averages) to find approximate roots.	
7.5	Rational functions	Identifying the domain of definition. Determining the positioning of the asymptotes Splitting into partial fractions	Intuitive approach to be adopted in explaining the concept of asymptotes	
7.6	Power function	Interpreting the graph of 2^x study of graph of e ^x	Identifying the graph of log x by the principle of symmetry	-
7.7	Circular and hyperbolic functions	Unit circle definition of trigonometric functions and their graphs, Identifying the periodicity of functions	Defining hyperbolic functions using circular functions.	
7.8	Arithmetic of functions	Computing sum. Difference. Product, quotient and composition of functions	Appropriate constraints on domain/range to be illustrated	
7.9	Some special functions	Graphing Absolute value, Square bracket, Fractional part and step functions. Sequences as functions	Use of more than one equation to define a function to be illustrated.	

7.10	Inverse of a function	Defining 1-1 onto functions and the inverse of a functon f	Relating inverse to symmetry of the graph of f	
7.11	Miscellaneo us functions	Concepts of explicit & implicit functions, parametric functions and even & odd functions.	To be illustrated through examples both analytic and graphical.	

7. DIFFERENTIAL CALCULAS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
8.1	Limits of a functions	Defining the limit of a function, stating fundamental results on limits, and recognizing important limits such as $\lim_{x \to 0} \frac{x^n - a^n}{a} \lim_{x \to 0} \frac{\sin 2\pi i \sin 2\pi}{x - 1}$ $\lim_{x \to 0} \frac{x - a}{x} x - 0 2\pi i = 1$ $\lim_{x \to 0} \frac{\log(1 + x)}{x} \lim_{x \to 0} \frac{a^x - 1}{x}$ $\lim_{x \to 0} \frac{\log(1 + x)}{x}$ $\lim_{x \to 0} \frac{a^x - 1}{x}$ $\lim_{x \to 0} \frac{1 + x}{x}$ $\lim_{x \to 0} \frac{1 + x}{x}$	Graphical approach and intuitive ideas to be exploited to explain the notion of limits. Simple applications of stated resulted to be illustrated.	Periods
8.2	Contimuity of a functin.	Defining continuity; Interpreting continuity graphically, identifying discontinous functins	Illustrating testing of continuity in the case of all important functions discussed in the beginning chapter.	30
8.3	Concept of differentiation	Defining and interpreting geometrically, Recognising the relation between continuity and differentiability	Graphical and analytical examples to be discussed.	
8.4	Differentiation techniques	Differentiatin from 1 st principles1 establishing rules for differentiation and deriving standard formula; Applying method of substitution Discussing logarithmic, implicit and parametric cases; differentiating successively (unto 3 rd order)	Multiple approaches to the same problem to be illustrated rule of Leibnitz not to be stated or used	

8. DIFFERENTIAL CALCULAS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
9.1	Concept of integration	Defining and identifying integral as anti-derivative	Geometrical interpretation for reverse of differentiation to be given	
9.2	Integration techniques	Recognizing rules of integration; statement of standard types, integrating using method of substitution, integrating by parts, deriving and applying Reduction	Integration of special types to be dealt with are: Scanning	20

9. HANDLING DATA

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
10.1	Measures of central tendency	Given a frequent distribution, to compute Mean, Median, Mode, GM and HM	Recall of computing some of these measures in the case of raw data to be done first	
10.2	Measures of dispersion	Computing Range, Standard Deviation and Coefficient or variation	Explanation through geometrical interpretation wherever possible	
10.3	Interpolation	Discriminating Interpolation and Extrapolation Forming difference table for equal intervals, Newton' s forward and backward interpolation	Through simple examples, guessing formulae by polynomial method.	15
10.4	Concepts of Probability	Approaching Probability axiomatically identifying mutually exclusive events, independent events etc. statement and verification of addtion theorem and multiplication theorem; Baye' s Theorem; applying conditional probability.	Only simple problems to illustrate the concepts to be used.	
			Total	210