PHYSICS - STANDARD XI

Expected specific outcomes of learning (1)	Content in Terms of Concepts (2)	Curriculum Transactional Strategies (3)	Illustrations (4)	Evaluation (5)	No. of Periods allotted (6)		
Recognises the scientific methods in understanding the basic principles of physics.	1.1.Physics – scope and excitement – physics in relation to technology and society.	Explains the various events in the day to day life related to the physics concepts.	Lists out some scientific phenomena involved in physical world.	What is physics? What is the role of physics in technology?	2		
Understands the basic forces in nature.	1.2. Forces in nature, conservation laws – gravitational, electromagne tic and nuclear forces (qualitative ideas)	Identifies the various forces involved in physical world and compares gravitational force with electromagnetic and nuclear forces.	Gives examples for Gravitational force. Electromagnetic force and nuclear force.	Name the different kinds of forces in physics. Explain the nature and range of forces in nature. Give examples of different forces.	3		
Understands the need for measurement. Appreciates the accurate measurement of physical quantities. Recognises the possible errors in measurements. Learns to use significant figures in mathematical calculations.	1.3. Measurement – Fundamental and derived units – length, mass and time measurement s. Accuracy and precision of measuring instruments. Errors in measurement – Significant figures.	Classifies the two categories of units. Explains the errors in measurement – Expresses results of calculation using signification figures.	Gives examples of fundamental and derived units. Tabulates the prefixes for power of 10. Lists out the various techniques in measuring time intervals.	Explain the need for measurement of physical quantities. State the rules to be followed in using SI units. What is meant by gross error? What is the number of significant figures in 0.0084032?	3		
Understands the dimensional formula of physical quantities. Understands the principle of homogeneity of dimensional equation.	1.4. Dimensions - Dimensions of physical quantities - dimensional analysis – Applications.	Obtains the dimensional formula for various physical quantities.	Uses the dimensional method (1) to check the correctness of an equation (2) to establish the relationship between the quantities. Lists out the limitations of dimensional analysis.	Check the correctness of the equations. 1. $F = \frac{mv^2}{r}$ 2. ? $\frac{1}{2l}\sqrt{\frac{T}{m}}$ Obtain the expression for the centripetal force dimensionally.	3		
UNIT – 2 - KINEMA Appreciates the motion of a body in a plane. (Two dimensional)	2.1.Motion in two dimensions – projectile motion – Types	Explains the horizontal projectile and shows	Gives the examples for projectile motion. Proves that	Show that the two angles of projection has the same horizontal	2		

UNIT - 1. NATURE OF THE PHYSICAL WORLD AND MEASUREMENT

Understands the principle of	of projectile – Horizontal and oblique projectile. 2.2.Force and inertia, Newton' s first	$Y = Kx^{2}$ Explains the oblique projectile and calculates the maximum height, time taken to reach maximum height, time of flight and range. Explains the inertia of rest, inertia of motion	Y = x tan ? ? $\frac{gx^2}{2u^2 \cos^2$? Defines force and inertia. Gives examples for	range. A rifle pointing horizontally at the center of a target fires a bullet at a speed of 200 ms ⁻¹ , Which strikes the target 5 cm below the centre. How far is the rifle from the target? State Newton' s first law of motion. Define inertia.	
inertia and appreciates that force is required to overcome inertia.	law of motion.	and inertia of direction based on Newton's first law.	inertia from daily life.		2
Relates momentum to force to obtain the mathematical expression for force and understands the impulse - momentum relation.	2.3.Momentum – Newton' s second law of motion – Unit of force – Impulse.	Derives the expression for force (F = ma) (Calculus method) Explains Impulse – momentum theorem.	Explains momentum and states Newton's second law of motion. Measures impulse using force – time graph. Illustrates the practical applications of impulse.	What is the unit of force? What is momentum? A car and lorry are moving with the same speed. Which one of the two has the greater momentum?	2
Recognises that action is the cause of reaction.	2.4.Newton' s third law of motion – Law of conservation of linear momentum and its applications.	Explains Newton' s third law of motion with examples. Proves that the momentum is conserved. Explains the apparent loss of weight in a lift with Newton' s third law.	Applies the law of conservation of momenum to recoil of gun, explosion of bomb and working of rocket and a jet plane.	State Newton' s third law. State and prove law of conservation of momentum.	2
Appreciates the equilibrium of a body due to the action of three forces.	2.5.Equilibrium of concurrent forces triangle law parallelogram law and Lami' s theorem – Experimental proof.	Explains Lami' s theorem. Explains the conditions of equilibrium. Describes an experiment to prove Lami's theorem.	Demonstrates the equilibrium of a body due to concurrent forces.	What are resultant and equilibrium? A body of mass 5 kg is hanging from a weightless string. A horizontal pull F is applied at a point of string due to which the two parts of string inclined an angle of 150°. Find the force applied and also the tension in the upper part of the string $(g = 10ms^{-2})$.	2

Understands and analyses the motion of a body in circular path. Recognises with examples, the centripetal force and appreciates banking of curves.	2.6.Uniform circular motion – angular velocity – angular acceleration – relation between linear and angular velocities. Centripetal force – motion in a vertical circle – bending of cyclist – vehicle on level circular road – vehicle on banked road.	Explains uniform circular motion. Defines the terms angular velocity and angular acceleration. Describes the motionof a cyclist along a curved path. Derives an expression for centripetal force.	Illustrates the centripetal force provided by gravitational and electromagnetic forces. Observes the motion of a bucket containing water in a verticle circle.	What is the condtion for skidding of vehicles? Explain the motion of a motor cyclist in a globe of death in a circus.	4
Understands the meaning of work in everyday life.	2.7.Work done by a constant force and a variable force. – Unit of work.	Defines work done. Shows that work is a dot product of two vectors. Graphically represents the work done by a variable force.	Lists out the work done by the force, if the body is displaced in different angles with different forces.	A 60 kg man pushes a 20 kg suitcase on wheels a distance of 10m by exerting a constant force of 2N. How much work does he do?	1
Identifies the various forms of energy.	2.8.Energy – Kinetic energy – work – energy theorem – potential energy – power.	Defines kinetic energy and derive an expression for kinetic energy. Discusses the work – energy theorem.	Lists out the various forms of energy. Gives example for work – energy theorem. Explains potential energy with examples.	What is the workdone by a body moving in a circular path? A 1kw motor pumps out water from a well 30 m deep. Calculate the quantity of water pumped out per second?	1
Understands the behaviour of collision between two bodies.	2.9.Collisions – Elastic and in- elastic collisions in one and two dimensions.	Explains two types of collisions. Derives an expression for velocity of bodies after collision.	Mentions the application of elastic collisions.	Distinguish between elastic and inelastic collisions.	2
	ICS OF ROTATIONAL				
Understands the equilibrium of a rigid body. Appreciates the comparison between linear and rotational motions.	3.1.Centre of a two particle system – generalization – applications – Equilibrium of bodies, rigid body rotation and equation of rotational motion. Comparison of	Explains the rigid body and its centre mass : Explains the equilibrium of a rigid body. Derives the equations of rotational motion. Tabulates the parameters of linear motion and	States the conditions for the equilibrium of rigid bodies. Tabulates the position of centre of mass of some regular bodies.	What is meant by a rigid body? Write the equations of rotational motion.	4

	linear and rotational motions.	rotational motion.			
Recognises the importance of moment of inertia of various bodies.	3.2.Moment of inertia and its physical significance radius of gyration – Theorems with proof. Moment of inertia of circular ring, disc, cylinder, sphere and thin straight rod.	Explains moment of inertia and radius of gyration. Analysis of the physical significance of moment of inertia. Proves the theorems of M.I.	States the factors on which the moment of inertia depends. Derives the expression of M.I. for various bodies. Explains M.I. in terms of rotational kinetic energy.	What is the physical significance of MI? State the theorems of M.I. What is the M.I. of a flywheel?	4
Understands the moment of momentum and force. Appreciates the conservation of angular momentum.	3.3.Moment of force, angular momentum. Torque – conservation of angular momentum.	Defines and explains the angular momentum. Relates the moment of inertia and angular acceleration. Explains the law of conservation of angular momentum.	Illustrates the conservation of angular momentum with examples. (diver, acrobat in circus, a ballet dance)	State the law of conservation of angular momentum. A cat is able to land on its feet after a fall. Which principle of physics is being used?	4
UNIT-4 SPACES					
Recalls about the solar system in the universe. Understands the motion of the planets around the sun.	4.1.Universe – Milky way galaxy – Helio, Geo centric theory – Kepler's laws of planetary motion.	Explains the laws of motion of planets.	States the Kepler's Laws of planetary motion. Defines perigee and apogee.	State the three laws of planetary motion. If the distance between the earth and the sun were doubled, what would be the new period of earth's orbit around the sun?	2
Recognises the universal law of gravitation. Understands the variation of acceleration due to gravity at different positions on the earth.	4.2.The universal law of gravitation; Acceleration due to gravity and its variation with the altitude, latitude, depth and rotation of the earth. – Mass of the earth. Inertial and Gravitational mass.	Explains Newton' s law of gravitation. Calculates the 'g' – value with the variation of (1) latitude (2) altitude (3) depth and (4) rotation of earth. Differentiates the inertial mass and gravitational mass.	Shows that the 'g' decreases with increase in altitude and depth. Obtains the relation between g and G.	A man can jump 1.5m on earth. Calculate the height he may be able to jump on a planet whose density is ¼ of the earth and radius is 1/3 of the earth.	4
Understands the gravitational field and potential. Appreciates the	4.3.Gravitational field strength – Gravitational potential – Gravitational	Defines and derives the expression for gravitational potential.	States the conditions to be satisfied for the synchronous satellite.	What is the escape velocity of moon? List out the uses of satellites.	3

				•	
launching of a	potential energy	Obtains the	Tabulates the	List out the	
satellite and its	near the surface	expressions for	escape velocities	satellites	
uses.	of the earth –	escape and	of moon and all	launched by our	
	Escape velocity	orbital velocities.	planets.	country.	
	- orbital velocity	Explains the	List out the		
	-	weightlessness of	applications of		
	Weightlessness	an astronaut in a	satellites in		
	– motion of	spaceship.	communication,		
	satellite –	Calculates the	remote sensing,		
	Rocket	total energy of	meterological,		
	propulsion	the satellites in	astrophysics and		
	Launching a	the orbits.	defences.		
	satellite – orbits		delences.		
	and energy.				
	Geo stationary				
	and polar				
	satellites –				
	applications.			-	
Appreciates the	4.4.Solar system -	Explains the	Determines the	State the	
ideas about the	sun – Nine	objects in the	size and mass of	conditions for the	
planets in the	planets –	solar system.	the planets.	presence of	
solar system.	Asteroids –	Explains the	State the presence	atmosphere and	
	Comets –	atmosphere and	and absence of the	life in other	
	Meteors –	temperature of	atmosphere.	planets.	
	Meteroites –	the planets.			3
	size of the				
	planets – Mass				
	of the planet –				
	Temperature				
	and				
	atmosphere.				
Understands the	4.5.Universe –	Explains the	States various	Mention the	
big bang theory.	stars	luminosity of	constellations.	theories of	
ang bang moory	constellations -	stars. Explains		universe.	2
	galaxies – origin	constellations.			
	of universe.				
UNIT-5 MECHAI	NICS OF SOLIDS AND	FIUIDS			
Recalls the four	5.1.States of	Explains	Observes the	How does P.E.	
kinds of matter.	matter- Inter-	graphically the	states of matter.	vary with inter	
Undertands the	atomic and	variation of PE	Observes the	atomic distances?	
inter-atomic	Inter-molecular	with inter atomic	applications of		
distances and	forces.	distances.	centre of gravity.		2
forces.	Conditions for	Explains	oonie of gravity.		<u> </u>
101063.	equilibrium –	equilibrium of			
	centre of gravity	rigid body.			
	– Applications.				
Pococnicos the	5.2.Solids – Elastic	Evolaina tha	Difforontiator	Why springs are	
Recognises the		Explains the	Differentiates		
elastic	behaviour,	stress – strain	elastic and plastic	made up of steel	
behaviour of	stress – strain	relationship with	bodies.	and not of	
solids.	relationship,	graph.	Observes the	copper?	
	Hooke' s law -	Describes the	extension of a	State Hooke's	
	experimental	experimental	plastic body	law.	
			without increase in	Explain the elastic	
	verification of	verification of			
	Hooke' s law –	Hooke' s law.	force. Discusses	properties of	4
	Hooke' s law – Three types of	Hooke' s law. Explains the	the behaviour of a	matter on the	4
	Hooke' s law – Three types of moduli of	Hooke' s law. Explains the three moduli of	the behaviour of a wire using different	matter on the basis of	4
	Hooke' s law – Three types of moduli of elasticity –	Hooke' s law. Explains the three moduli of elasticity.	the behaviour of a wire using different weights.	matter on the	4
	Hooke' s law – Three types of moduli of elasticity – applications	Hooke' s law. Explains the three moduli of elasticity. Derives the	the behaviour of a wire using different weights. Determines the	matter on the basis of	4
	Hooke' s law – Three types of moduli of elasticity –	Hooke' s law. Explains the three moduli of elasticity.	the behaviour of a wire using different weights. Determines the Young's modulus	matter on the basis of interatomic	4
	Hooke' s law – Three types of moduli of elasticity – applications	Hooke' s law. Explains the three moduli of elasticity. Derives the	the behaviour of a wire using different weights. Determines the Young's modulus of elasticity with	matter on the basis of interatomic	4
	Hooke' s law – Three types of moduli of elasticity – applications (crane, bridge) relation between them.	Hooke's law. Explains the three moduli of elasticity. Derives the relation between three moduli of elasticity.	the behaviour of a wire using different weights. Determines the Young's modulus of elasticity with Searle's apparatus.	matter on the basis of interatomic forces.	4
Appreciates the Pascal' s law and	Hooke' s law – Three types of moduli of elasticity – applications (crane, bridge) relation between	Hooke's law. Explains the three moduli of elasticity. Derives the relation between three moduli of	the behaviour of a wire using different weights. Determines the Young's modulus of elasticity with	matter on the basis of interatomic	3

	D . "				r
observes the	- Pascal's law	by a fluid column.	lifting heavy	How does the	
uses.	and its applications	Describes the working of	objects using hydraulic lift.	gravity affect the fluid pressure?	
	(hydraulic lift	hydraulic lift and	nyuraune nit.	Why is the blood	
	and hydraulic	brakes.		pressure in	
	brakes). Effect	Explains the		humans greater	
	of gravity on	effect of gravity		at the feet than at	
	fluid pressure.	on fluid pressure.		the brain?	
Understands the	5.6.Surface energy	Explains S.T.	Gives the	Define angle of	
idea of surface	and surface	using molecular	examples of	contact :	
tension and	tension, angle of	theory. Relates	surface tension.	Is it easier to	
behaviour of	contact -	surface energy	Gives the	spray water when	
liquid surfaces.	application of	and surface	examples of	soap is added to	
Recognises the	surface tension	tension. Explains	capillarity	it. Why?	
action of	in (i) formation	the capillary	Observes the	Why is it that a	
detergents.	of drops and	action of liquid	clearing action of	needle may float	4
	bubbles. (ii)	and determines	detergents.	on a clear water,	
	capillary rise.	the S.T.		but will sink when	
	(iii) action of	experimentally. Derives the		some detergent is added to water?	
	detergents.	expression for		added to water?	
		surface tension			
		by capillary rise.			
Understands the	5.7.Viscosity-	Explains the	Distinguishes	Define coefficient	
frictional force	Stoke' s law –	factors that affect	streamline and	of viscosity.	
between the	terminal	viscous force.	turbulent flow.	What is Reynold' s	
liquid layers.	velocity,	Defines	Determines the	number?	
Appreciates the	streamline flow	coefficient of	coefficent of	State Bernoulli' s	
applications of	 – turbulant flow 	viscosity.	viscocity of very	theorem.	
Bernoulli' s	– Reynold' s	Derives	high viscous liquids	Why do the	
theorem.	number –	Poiseuille' s	like grease.	clouds float in the	
	Bernoulli's	formula	Observes the	sky?	
	theorem – applications – lift	dimensionally for the flow of liquid	falling of rain drops through air.	A person standing near a fast –	5
	on an aeroplane	through a pipe.	Lists out the	moving train has	5
	wing.	Obtains the	impotance of	a danger of falling	
	wing.	expression for	viscosity.	towards the train.	
		Stoke' s law.	Lists out the	Why?	
		Explains Stokes	applications of		
		fall method.	Bernouli's theorem.		
		Proves			
		Bernoulli' s			
		theorem			
		mathematically.			
	ATIONS AND WAVES				
Recognises the	6.1.Periodic	Explains the	Represents	What is meant by	
motion of certain	motion –	periodic motion of	graphically the	periodic motion	
bodies are	period,	pendulum,	displacement as a	and oscillatory	
periodic /	frequency,	vibrations of	function of time.	motion?	1
oscillatory	displacement	stretched string.		Distinguish	
	as a function of			between them	
	time.			with examples.	
Understands the	6.2.Simple	Defines simple	Gives some	What is force	
various	harmonic	harmonic motion	examples of simple	constant?	
characteristics	motion –	-	harmonic motion.	Write an equation	
of SHM periodic	amplitude,	Explains that	Defines, time	of SHM of a	
motion.	frequency,	simple harmonic	period, frequency,	particle with	
	phase –	motion as the	angular frequency,	amplitude 0.01m	
	uniform –	projection of	phase, phase	frequency 100 Hz	
	circular motion	uniform motion	difference between	and initial phase	2
	as SHM.	on a diameter of	two vibrating	of ?/6.	-
		a circle and	particles.	What is the phase	
		hence deduces	Shows graphically	difference	
		expressions for	variation of	between	
		displacement,	displacement,	displacement and	
					1
		velocity and acceleration.	velocity and acceleration w.r.t.	acceleration?	

			time.		
Understands the importance of SHM in oscillating spring and simple pendulum. Observes energy conservation in the motion of a simple pendulum.	6.3.Oscillations of a spring and simple pendulum – derivation of expression for time period – Restoring force – force constant. Energy in SHM. Kinetic and potential energies – Law of conservation of energy.	Discuss the dynamics of harmonic oscillation. Obtains an equation for frequency of oscillations of spring. Shows that oscillations of a simple pendulum are simple harmonic and obtains an expression for time period. Derives the total energy of a particle executing SHM.	Shows that restoring force is proportional to displacement. Applies the law of conservation of energy in oscillating simple pendulum. Names the factors with which the time period of simple pendulum does not depend upon. Represents graphically the values of kinetic and potential energy for different positions of a simple pendulum.	What is the angular frequency of a spring of mass 5 kg and its force constant is 100Nm ⁻¹ . Compare the acceleration due to gravity of two places if the time for 100 oscillations of a simple pendulum are 8 min 2 seconds and 8 min 20 seconds. In which position of a simple pendulum is the P.E. maximum?	3
Identifies damped of oscillations and resonance.	6.4.Free, forced and damped oscillations. Resonance, coupled oscillations.	Defines different types of vibrations. Explains resonant vibrations. Explains. Damped oscillation – displacement - time graph. Energy vesses time graph.	Illustrates with example free, forced and damped oscillations. Mentions some examples of coupled oscillations. Lists out the uses of resonance in daily life.	How will you make the damped oscillations into maintained oscillations? What are the advantages and disadvantages of resonance?	2
Understands the propagation of energy in the form of wave motion.	6.5. Wave motion- Longitudinal and transverse waves – relation between &, ? and ? ?	Defines wave motion and explains the characteristics of wave motion. Defines transverse and longitudinal waves.	Obtains the relationship between frequency and time period, relation between velocity, frequency and wavelength. Distinguishs transverse and longitudinal waves.	What are the characteristics of wave motion?	2
Recognises that sound travels with different speed in different media.	6.6.Speed of wave motion in different media – Newton' s formula – Laplace's correction.	Expresses the formula for velocity of trans verse and longitudinal waves in solid, liquid, gases. Deduces the expression for Newton and Laplace's correction.	Explains how the speed of sound varies in different media. Mentions and explains the factors that affect the velocity of sound in air.	Explain why sound can be heared more distinctly at greater distances over a water surface. Does velocity of sound (1) increase with altitude (2) heating?	2

					T
Recalls the propagation of the wave.	6.7.Progressive wave – displacement equation – characteristics.	Obtains an equation for displacement of a plane a progressive wave.	Mentions the characteristics of progressive wave.	What are the characteristics of a progressive wave?	1
Understands the principle of superposition. Understands the principle of standing waves produced in musical instruments.	6.8.Superposition principle. Interference – Intensity and sound level. Beats standing waves (mathematical treatment) – Standing waves in strings and pipes – Sonometer – Resonance air column – fundamental mode and harmonics.	Explains the principle of superposition phenomenon 1) Interference 2) beats 3) stationary waves Defines stationary waves. Obtains expression for stationary waves. Mentions the characteristics of stationary waves. Explains the modes of vibration of air column in pipes. Explains Resonance column experiment to obtain velocity of sound.	Demonstrates interference of sound in laboratory. Mentions the uses of beats- compares stationary and progressive waves. Determines the velocity of sound using resonance column apparatus.	In an experiment, the tuning fork and sonometer wire gives 4 beats per sec, when the length of wire is 1m and 1.05m. What is its frequency? What principle is used in stethoscope? Write the laws of vibrations of stretched strings.	3
Understands Doppler effect and its applications.	6.9.Doppler effect (quantitative idea) – applications.	Derives expressions for apparent frequency of sound in different cases.	Discusses various applications of Doppler effect.	The source and observer approaches each other with a velocity 30 ms ⁻¹ . If the real frequency of source is 750 Hz. What is its apparent frequency?	2
UNIT – 7 – HEAT A	ND THERMODYNAMIC		-		
Understands the postulates of kinetic theory of gases. Recognises the collision of molecules hence the pressure exerted by the gas. Appreciates the ideas of degrees of freedom and law of	7.1.Kinetic theory of gases – postulates – pressure of a gas – Kinetic energy and temperature – degrees of freedom – law of equipartition of energy – Avogadro' s number.	States the postulates of kinetic theory of gases. Derives the expression for pressure of a gas. Relates kinetic energy with pressure. Defines degrees of freedom. States law of equipartition of	Lists out the postulates of kinetic theory of gases. Observes that the KE is directly proportional to the temperature. Gives example of mono, di and triatomic molecules.	What is meant by free path? How does a gas exert pressure? What is the relation between kinetic energy and temperature? What is the energy of molecule per degree of freedom?	2

equipartition of energy.		energy. Calculates the energy of monoatomic, diatomic and triatomic molecules.			
Understands the zeroth law of thermo dynamics based on thermal equilibrium. Appreciates that heat required to raise the temperature of a substance.	 7.2.Thermal equilibrium and temperature (zeroth law of thermodynamics)) Heat, work and internal energy. Specific heat – specific heat capacity of gases at constant volume and pressure. Relation between C_p and C_v. (mono atomic and diatomic). 	Explains thermal equilibrium and zeroth law of thermodynamics. Analyses why C_p is always greater than C_v . Derives the relation between C_p and C_v .	Defines specific heat capacity at constant pressure and volume. Obtains the relation between C_p and C_v .	State zenoth law of thermodynamics. What is absolute zero of temperature? Calculate C _p and C _r for argon.	3
Understands the relation between work and heat. Appreciates the principle of refrigeration.	 7.3First law of thermodynamics work done by thermodynamica system – Reversible and irreversible processes – isothermal and adiabatic processes. Carnot engine – refrigerator - efficiency – second law of thermodynamics 	Explains and states first law of thermodynamics. Draws PV diagram. Explains the isothermal and adiabatic processes. Describes the parts and working of Carnot engine. Explains the principle of refrigeration with diagram.	Observes that the area of P-V diagram is equal to the amount of work done by the system. Compares isothermal and adiabatic processes. Identifies the work done by the Carnot engine from the indicator diagram. Compares the principle of Carnot engine and refrigerator.	State the first law of thermodynamics. Distinguish isothermal and adiabatic process. What is an indicator diagram? The efficiency of heat engine is always less than 100%. why?	5
preciates the various modes of transfer of heat energy	7.4.Transfer of heat – conduction. convection and radiation – Thermal conductivity of solids – black body radiation. Prevost' s theory – Kirchhoff's law. – Wien' s displacement law, Stefan' s law (statements only). Newton's	Explains the transfer of heat by (1) conduction (2) convection and (3) radiation. Explains and defines thermal conductivity. Defines the black body radiation. Calculates the surface temperature of the sun. Describes the working of	Lists out the applications of thermal conduction in daily life. Observes that the emissive power and absorptive power is maximum for a black body. Gives out the applications of Kirchhoff's law.	Discuss the Prevost theory of heat exchange. What is a perfect black body? What are the properties of radiation? Why is the electric Iron highly polished? Define solar constant. What are Fraunhofer lines?	6

		nume he l'anna de la		To what	,
	law of cooling – solar constant and surface	pyroheliometer. Explains the cooling by		To what temperature must a black body be	
	temperature of	radiation with		raised in order to	
	the sun-	cooling curve.		double the total	
	pyroheliometer.	Explains		radiation, If the	
		Kirchhoff s law		original	
		concerning the relation between		temperature is 727°C?	
		absorptive power		121 01	
		and emissive			
		power of a body.			
UNIT - 8 RAY OP		- · · ·			1
Recognises the	8.1 Reflection of	Explains the	States the laws of	State the	
reflection	light – Reflection	reflection	reflection. Shows	conditions of total	
phenomena. Understands	at plane and curved surfaces.	phenomena. Explains the	that the reflected light turns by 2?	internal reflection. What is the	
total internal	curved sundces.	condition of total	when mirror turns	velocity of light?	
reflection.	Total internal	internal	by ??	How is it	
Appreciates the	refelction and its	refelection.		determined?	4
determination of	applications	Explains the			4
velocity of light	Determination of	applications of			
its physical	velocity of light -	total internal			
significance.	Michelson's	reflection.			
	method	Explains the formation of			
		image of a point			
		in a plane mirror.			
Understands the	8.2 Refraction –	Derives the	Proves the lens	Derive the lens	
lens formula.	spherical lenses	expressions for	makers formula	makers formula.	
	– Thin lens	the thin lens	$\frac{1}{f}?(??1)?\frac{1}{?R_1}?\frac{1}{R_2}?$		
	formula. Lens makers formula	formula. Explains the power of a	$f \qquad \qquad$		
	- magnification	lens.	Establishes		4
	– power of lens		$\frac{1}{f}$? $\frac{1}{f_1}$? $\frac{1}{f_2}$		
	 – combination of 		$f f_1 f_2$		
	thin lenses in				
December of the	contact.	Franksing the	Derivers the relation	For the second	
Recognises the refraction of light	8.3 Refraction of light through a	Explains the refraction and	Derives the relation $A^{2}D$	Explain the cause of dispersion	
through a prism.	prism.	dispersion of light	$\sin\frac{A?D}{2}$		
	Dispersion –	in prism.	? ? $\frac{2}{\sin \frac{A}{2}}$.		
	spectro-meter –	Describes the	$\frac{\sin 2}{2}$		
	Determination of	spectrometer.	Derives the		
	? – Rainbow	Gives the	dispersive power of		
	(analytical	analytical treatment of	a prism. Describes the		
	treatment)	treatment of rainbows.	Describes the determi-nation of ?		4
			by determining A		
			and D. Also by		
			plotting		
			i-d curve. Explains		
			the main features		
			of primary and		
			secondary rainbows.		
Unit 9 ELECTRC	STATICS	l		1	1
Recognizes the	9.1 Frictional	Explains the	Observes the	State Coulomb' s	
two types of	electricity,	distribution of	attraction between	inverse square	_
charges and	charges and	charges due to	unlike charges and	laws.	3
change conservation.	their conservation;	friction. States Coulomb's	repulsion between like charges using	Two small equal unlike charges 2 x	
CONSCIVATION.	conservation,	JIAIGS COULDITIDS	ine charges using	unine charges 2 X	

				40-80	
Understands the	Coulomb' s law –	law of forces	pithball pendulum.	10 ⁻⁸ C are placed	
force of attraction and	forces between	between like	Calculates the force between	at A and B, seperated by 6	
	two point	charges and			
repulstion	electric charges.	unlike charges.	multiple charges	cm. Find the force	
between	Forces between	Finds the	vectorially.	on a charge 1 x	
charges.	multiple electric	resultant force		10 ^{-®} C placed at C. where C is 4 cm	
	charges –	due to number of		from the line AB	
	superposition principle and	charges.		along the	
	continuous			perpendicular	
	charge			bisector ACB.	
	distribution.			DISECIOI ACD.	
Understands the	9.2 Electric field –	Explains the	Lists out the	What is an	
field around a	Electric field due	electric field.	properties of	electric dipole?	
charge and	to a point	Derives the	electric lines of	What are the	
dipole.	charge, electric	expression for	forces.	properties of	
Recognises the	field lines;	electric field due	Defines electric	electric lines of	
electric dipole	Electric dipole –	to a point charge	dipole.	forces?	
system of	electric field	and dipole.	Calculates dipole	What happens to	
hydrogen atom.	intensity due to	Discusses the	moment.	the electric dipole	
	a dipole –	torque acting on	Shows that the	when it is placed	4
	behaviour of	the dipole placed	negative potential	in a uniform	-
	dipole in a	in electrifc field.	gradient is electric	electric field?	
	uniform electric	Explains the role	field.		
	field –	water molecule			
	application of	which is a dipole			
	electric dipole in	in a microwave			
	microwave	oven.			
	oven.				
Understands the	9.3 Electric	Explains the	Defines the unit of	Define electric	
concept of	potential –	electric potential	potential.	potential.	
electric potential	potential	and potential	Explains the	Calculate electric	
and potential	difference –	difference.	equipotenial	potential energy	
energy.	electric potential	Derives the	surfaces.	of electron –	
	due to a point	expressions for		proton system of	
	charge and due	electric potential		hydrogen atom.	
	a dipole.	due to a point		What is the	4
	Equipotential	charge and a		relation between	
	surfaces -	dipole.		potential and	
	Electrical	Explains the		electric field?	
	potential energy	electric potential			
	of a system of	energy.			
	two point				
Understands the	charges. 9.4.Electric flux –	Evolaina alastria	Lists out the	What is electric	
electric flux.		Explains electric flux and its unit.		flux?	
	Gauss' s theorem and its	States Gauss	applications of Gauss theorem.		
Applies Gauss' s theorem to find	applications to	theorem.	Uses the scalar	State Gauss theorem.	
the electric field	find field due to	Explains how to	product of two	What is charge	
due to a	(1) infinitely long	calculate the	vectors to calculate	density?	
charged body	straight wire, (2)	electric field due	the electric flux.	uonany:	
	uniformly	to a charged wire,			
	charged infinite	plane sheet and			
	plane sheet (3)	spherical shell			3
	two parallel				
	sheets and (4)				
	uniformly				
	charged thin				
	spherical shell				
	(inside and				
1	(inside and				
	outside)				

Understands the charging of a body by induction. Recognises the uses of capacitors. Understands the working of lightning arrestor and van de Graff generator.	 9.5.Electrostatic induction – capacitor and capacitance – Dielectric and electric polarization – parallel plate capacitor with and without dielectric medium. Applications of capacitor – energy stored in a capacitor. Capacitors in series and in parallel – action of points – Lightning arrester – Van de Graff generator - 	Explains the principle of capacitor. Explains the alignment of charges in a dielectric. Obtains the expression for capacitance of a parallel plate capacitor. Knows the effect of dielectric in a parallel plate capacitor. Describes the construction and working of a lightning arrestor and Van de Graff generator.	Lists out the applications of capacitor. Obtains the effective capacitance of capacitors connected in series and in parallel. Defines capacitance. Proves the increase in capacitance with increase in thickness of dielectric. Explains the energy stored in a capacitor.	What happens to the capacitance of a parallel plate capacitor if the seperation of plates is doubled? A 5 ?F capacitor is charged to a potential difference of 800 V and discharged through a conductor. How much energy is given to the conductor during the discharge. Describe the construction and working of a Van de Graff generator.	4
Unit – 10. MAGNE					I
Appreciates the earth's magnetic elements.	10.1. Earth's magnetic field and magnetic elements.	Defines and explains the dip, declination and horizontal intensity.	Explains the method of finding dip and declination.	What are the elements of earth' s magnetic field?	2
Applies the magnetic intensity due to a magnetic dipole.	10.2.Magnetic field intensity due to magnetic dipole (bar magnet) along the axis and perpendicular to the axis.	Obtains an expression for magnetic field intensity at a point on the axial line and perpendicular to the axis.	Observes the neutral points lie along the axis of a magnet and the orientation of the magnet with respect to earth' s magnetic field.	Derive and expression for magnetic field intensity at a point on the axial line and perpendicular to the axis.	2
Understands the tangent law and applies the knowledge in measuring magnetic moment.	10.3.Tangent law – Deflection magnetometer - TanA and - Tan B positions.	States tangent law and uses the law in deflection magnetometer. Compares the magnetic moments of magnet of different sizes.	Demonstrates the ratio of magnetic moment of two given short magnets experimentally.	State and explain tangent law. Mention the precautions while setting the mangetometer.	2
Understands the Torque experienced by a dipole placed in uniform magnetic field	10.4 Torque on a magnetic dipole (bar magnet) in a uniform magnetic field.	Explains Torque on a magnetic dipole in a uniform magnetic field.	Derives an expression for the Torque and finds the direction of torque Gives its SI unit.	Define magnet dipole and dipole moment.	1
Observes the magnetic lines around a magnet.	10.5.Bar magnet - magnetic field lines	Explains the formation of magnetic field lines of forces.	Mention the properties of magnetic lines of forces.	Draw magnetic field lines in bar magnet.	2
Understands the intensity of magnetisation.	10.6 Magnetic properties of materials – Intensity of	Defines intensity of magnetization, magnetic susceptibility,	Tabulates the susceptibilities and permeabilities of materials.	Define magnetic permeability.	2

	magnetization magnetic susceptibility, magnetic induction and permeability	magnetic induction and permeability			
Identifies the classification of materials.	10.7.Dia, Para, ferro magnetic substances with example.	Explains the properties of diamagnetic, para and ferromagnetic substances.	List out the properties of dia, para and ferro magnetic materials.	Define curie temperature.	2
Identifies the material having high retentivity.	10.8.Hysterisis	Explains the retentivity and coercivity of a substance.	Draws Hysteresis loop for soft iron core.	Which material is used for electromagnet?	1

STANDARD XI

PHYSICS - PRACTICALS

Practicals to be done by choosing any four experiments from each group.

GROUP A

1. Vernier callipers

- (1) To measure diameter of a cylindrical object / spherical object. Find its volume and surface area.
- (2) To measure internal diameter and depth of a given beaker and hence find its volume.
- 2. Screw gauge.
 - (1) To find the diameter of wire using a screw gauge and compare it by wrapping the same wire around a pencil and explain its difference.
 - (2) Find the thickness of (1) a glass plate and (2) thickness of a sheet of paper from observed thickness of 20 sheets paper.
- 3. Physical Balance
 - (1) To determine the mass of two different objects using physical balance.
 - (2) To determine the mass of a body in air and in water. Find its relative density.
- 4. To find the density of the material of a given wire with the help of a screw gauge and a physical balance.
- 5. Simple pendulum.
 - (1) To find the time period of a simple pendulum and hence find acceleration due to gravity.
 - (2) To draw graphs between L and T and L and T^2 and to decide which is better.
 - (3) Find the length of a seconds pendulum from the graph between L and T^2 .
- 6. (1) To verify the parallelogram law of forces, triangle law of forces and Lami's theorem.

- (2) To find the unknown weight of a body by the method of vector addition of forces.
- 7. Measure the mass and dimensions of (1) rod (2) rectangular plate (3) hollow cylinder (4) solid cylinder (5) hollow sphere (6) solid sphere. Calculate the moment of inertia.
- 8. To find radius of capillary tube by of mercury Pellet method.

GROUP B

- 1. To determine Youngs modulus of the material of a given wire by using Searles' apparatus.
- 2. To find the spring constant of a spring by method of oscillations.
- 3. To study the rate of cooling of molten wax (or napthalene) Draw graph between time and temperature.
- 4. To determine the surface tension of water by capillary rise method.
- 5. To determine the coefficient of viscosity by Poiseuille's flow method.
- 6. To determine the coefficient of viscosity of a given viscous liquid by measuring the terminal velocity of a given spherical body.
- 7. To verify the laws of a stretched string using a sonometer.
- 8. To determine the frequency of a tuning fork and weight of the stone using a sonometer.

GROUP - C

- 1. To find the velocity of sound in air at room temperature using the resonance column apparatus.
- 2. To study the relationship between the time and temperature in cooing of objects. verification of Newtons law of cooling.
- 3. Solar constant to find solar constant.
- 4. To determine the moment of inertia of a circular disc.
- 5. To find the refractive index of water using a travelling microscope.
- 6. To determine the focal length of (1) a concave mirror (2) a convex mirror using a convex lens.
- 7. To establish the current voltage relationship (Ohm' s law) for a conductor and finds its resistance.
- 8. To plot a magnetic field due to a bar magnet.
 - (1) Placed in the magnetic meridian with its North pole pointing south and to locate the neutral points.
 - (2) North pole pointing North and locate null points.