II Semester M.C.A. Examination, Feb./March 2010 DISCRETE MATHEMATICS

Time: 3 Hours Max. Marks: 100

Instructions: 1) Answer all questions in Part A, 5 out of 8 questions in Part B and 4 out of 6 questions in Part C.

- 2) Part A: Questions from 1 to 8 carry 1 mark and 9 to 14 carry 2 marks each.
- 3) Part **B**: **Each** question carries 8 marks.
- 4) Part C: Each question carries 10 marks.

PART - A

- 1. Define a power set. Give an example.
- 2. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 7\}$, $B = \{4, 5, 6, 7\}$ Compute $A \cap \overline{B}$.
- 3. Define contradiction.
- 4. If (2y+1, 2x-1) = (x-2, y-2) find the valued of x and y.
- 5. Define universal quantifier.
- 6. Let $A = \{1, 3, 5\}$, $B = \{2, 3\}$, write down $B \times A$.
- 7. Define on-to function. Give an example.
- 8. Let $f: R \rightarrow R$ defined by

$$f(x) = \begin{cases} 3x - 4 & \text{for } x > 0 \\ -2x + 3 & \text{for } x \le 0 \end{cases}$$

Determine f(0), f(-1).

9. Prove that for any two sets A and B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

- 10. Determine the sets A and B, given that $A B = \{1, 2, 4\}$, $B A = \{7, 8\}$ and $A \cup B = \{1, 2, 4, 5, 7, 8, 9\}$.
- 11. Construct the truth table for the compound proposition : $(p \rightarrow q) \land (q \rightarrow r)$.
- 12. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 5\}$. Determine the number of relations from A to B.
- 13. Let $R = \{(1, 2) (3, 4) (2, 2)\}$ and $A = \{(4, 2) (2, 5) (3, 1) (1, 3)\}$ be relations on the set $A = \{1, 2, 3, 4, 5\}$. Find $S^{\circ}(S^{\circ}R)$.
- 14. Let $X \to Y$ be a function and A and B be arbitrary nonempty subsets of X. Then prove that $f(A \cup B) = f(A) \cup f(B)$.

- 1. Prove that, for any propositions p, q, r, the compound proposition $\{p \rightarrow (q \rightarrow r)\} \rightarrow \{(p \rightarrow q) \rightarrow (p \rightarrow r)\}\$ is a tautology.
- 2. Define the negation of a conditional. Verify this using truth tables.
- 3. Prove by mathematical induction that, for all positive integers $n \ge 1$, $1+2+3+\cdots+n=1/2$ n (n+1).
- 4. If R and S are equivalence relations on a set A, then prove that $R \cap S$ is an equivalence relation. Is $R \cup S$ an equivalence relation?
- 5. Define partition of a set. If A is a nonempty set, then prove that
 - i) Any equivalence relation R on A induces partition of A.
 - ii) Any partition of A gives rise to an equivalence relation R on A.
- 6. Prove that, there exists a one-to-one correspondence between the elements of a subgroup and the elements of the left (right) coset thereof.
- 7. For a group G, prove that the function $f: G \rightarrow defined by f(a) = a-1is$ an isomorphism if and only if G is abelian.
- 8. Define Euler graph. Prove that, a given connected graph G is an Euler graph if all vertices of G are of even degree.

- 1. Using the laws of set theory, simplify the following:
 - i) $(A B) \cup (A \cap B)$
 - ii) $\overline{(A \cup B) \cap C} \cup \overline{B}$
- 2. Consider the following open statements with the set of all real numbers as the universe.

$$p(x): x \ge 0$$

$$q(x)$$
: $x^2 \ge 0$

$$r(x)$$
: $x^2-3x-4 = 0$ $s(x)$: $x^2-3>0$

$$s(x): x^2 - 3 > 0$$

Determine the truthness or falsity of the following statements.

- i) $\exists_{\mathbf{X}}$, $p(\mathbf{X}) \land q(\mathbf{X})$
- ii) $\forall x, p(x) \rightarrow q(x)$
- iii) $\forall x, q(x) \rightarrow s(x)$
- iv) $\forall x, r(x) \lor s(x)$
- 3. Negate and simplify each of the following:
 - i) $\exists_X \{p(x) \lor q(x)\}$
 - ii) $\forall x, \{p(x) \land \neg q(x)\}$
 - iii) $\forall x, \{p(x) \rightarrow q(x)\}$
- 4. Let $A=\{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only if a is a multiple of b. Represent the relation R as a matrix and draw its digraph.
- 5. Let $A=\{1, 2, 3, 4, 5\}$, Define a relation R on A×A by (x1, y1) R (x2, y2) if and only if x1 + y1 = x2 + y2.
 - i) Verify that R is an equivalence relation on A×A
 - ii) Determine the equivalence classes [(1, 3)], [(2, 4)] and [(1, 1,)].
- 6. Prove that the intersection of two subgroups of a group is a subgroup of the group. Is the union of two subgroups of a group is a subgroup of the group? Justify your answer.

II Semester M.C.A. Examination, Feb./March 2010 DBMS

Time: 3 Hours Max. Marks: 100

Instructions: 1) Answer all questions in Part A, 5 out of 8 questions in Part B, and 4 out of 6 questions in Part C.

- 2) Part A: Questions from 1 to 8 carry 1 mark each and 9 to 14 carry 2 marks each.
- 3) Part **B**: Each question carries 8 marks.
- 4) Part C: Each question carries 10 marks.

PART - A

- 1. What is a weak entity set?
- 2. What are the two indexing techniques?
- 3. What is the role of partial key.
- 4. What do you mean by entity integrity?
- 5. What is a deadlock state?
- 6. What is RDBMS?
- 7. Define relational schema.
- 8. A relation is analogous to a ————.
- 9. What is a virtual table?
- 10. What is aggregation?
- 11. Mention any 2 features of a hierarchical data model.
- 12. What is a 1:M relationship?
- 13. Write any two file organization techniques.
- 14. What are the different transaction states?

- 1. Explain the three level architecture of DBMS.
- 2. Distinguish between physical and logical data independence.
- 3. Explain fixed length and variable length records.
- 4. Mention the properties of a Relation Tables.
- 5. Explain Third Normal Form with an example.
- 6. Explain an Update Cascade and Check Clause.
- 7. Write a note on Crash recovery.
- 8. Write a short note on Characteristics of Distributed database.

PART - C

- 1. Explain the relational data model with its advantages and disadvantages.
- 2. Discuss implementation of direct file organization.
- 3. "Virtually every database is implemented internally as some variant of B-Trees" Comment on this statement.
- 4. Explain the concept of lossless decomposition with respect to 5NF.
- 5. Determine the path that must be chosen in converting from an old existing system to a new system.
- 6. Explain concurrency control and strict two-phase locking.

II Semester M.C.A. Examination, Feb./March 2010 OOPS WITH C++

Time: 3 Hours Max. Marks: 100

Instructions: 1) Answer all questions in Part A, 5 out of 8 in Part B, and 4 out of 6 questions in Part C.

- 2) Part A: Questions from 1 to 8 carry 1 mark and 9 to 14 carry 2 marks each.
- 3) Part **B**: **Each** question carries **8** marks.
- 4) Part C: Each question carries 10 marks.

PART - A

- 1. Define inline function.
- 2. What is the size of the empty class?
- 3. Give two applications of OOP.
- 4. What are function templates?
- 5. Define virtual function.
- 6. Define User defined data type.
- 7. Define friend function.
- 8. Define encapsulation.
- 9. Explain the differences between private and protected members?
- 10. Explain static data member with example.
- 11. Explain virtual base classes.
- 12. Define operator overloading.
- 13. Define structure. Explain with an example.
- 14. Explain Dynamic cast operator.

- 1. Define Data type. Explain different types of data type with examples.
- 2. Explain different string functions with an example.
- 3. Explain different control structures with an example.
- 4. Define Arrays. Explain different types of arrays with an example.
- 5. Write a C++ program to explain the concept of friend function.
- 6. Write a C++ program to add two complex numbers.
- 7. Define function. Explain different parameter passing mechanisms.
- 8. Write a note on:
 - a) Constructor and Destructor in derived class.
 - b) Friend function in operator overloading.

PART - C

- 1. Define Constructors. Explain different types of constructor with a program.
- 2. Write a C++ program to overload a Unary operators ++ and -.
- 3. Define Inheritance. Explain different types of inheritance with an example.
- 4. Explain basic concepts of object-oriented programming.
- 5. Write a Template program to sort the array of integers and double by using Bubble- sort technique.
- 6. Write a note on:
 - a) Scope Resolution Operator.
 - b) Cin and Cout statements with example.
 - c) Pointers in C++.

II Semester M.C.A. Examination, Feb./March 2010 COMPUTER ORGANIZATION AND ARCHITECTURE

Time: 3 hours Max. Marks: 100

Instructions: 1) Answer all questions in Part A, 5 out of 8 questions in Part B, and 4 out of 6 questions in Part C.

- 2) Part A: Questions from 1 to 8 carry 1 mark each and 9 to 14 carry 2 marks each.
- 3) Part **B**: **Each** question carries 8 marks.
- 4) Part C: Each question carries 10 marks.

PART - A

- 1. What is a digital computer?
- 2. What is a program?
- 3. What is a Main Frame Computers?
- 4. What is a Buffer?
- 5. What are Multiplexer?
- 6. What is a cache memory?
- 7. What is a ROM?
- 8. Define Boolean algebra.
- 9. What is DMA?
- 10. What are hardware interrupts? Give an example.
- 11. Explain time-shared common bus.
- 12. What are different I/Os? Explain.
- 13. Explain the Von Neumann Architecture.
- 14. What is a virtual memory?

- 1. Explain different functional units of a digital computer with a neat block diagram.
- 2. What are the advantages and disadvantages of RISC?
- 3. Explain in brief different types of interrupts.
- 4. Present Least-recently-used (LRU) method with 3 frames.
- 5. Discuss register stack and memory stack.
- 6. What is the need of master-slave flip-flop? With the help of a logic diagram, explain the working of the master-slave flip-flop.
- 7. Discuss how floating point numbers are represented in a computer. Take suitable examples.
- 8. Explain the Von Neumann architecture, with the help of a suitable diagram. Discuss the advantages and disadvantages of this architecture.

PART - C

- 1. Write and explain flowchart for I pass assembler.
- 2. With a neat diagram explain three state table buffers.
- 3. Give the block diagram of crossbar switch and explain in brief.
- 4. Explain how DMA transfer will improve the data transfer rate in a computer.
- 5. Draw and explain the architecture of microcomputer.
- 6. What is pipelining? Explain pipelining through space time diagram for 5 instructions with 6 stages each.
